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Abstract

This paper extends the previously reported results on using two layer
feed-forward neural network models for estimating human performance
from event-related potentials (ERP) elicited by task-relevant stimuli [12].
Individual models were constructed using principal-component analysis
regression (PCAR) and radial basis function (RBF) networks.

1 Introduction

In many safety-critical applications (e.g., air traffic control, power plant opera-
tion, military applications) the control is based on the ability of human operators
to detect and evaluate task-relevant signals in presented visual data. Perform-
ance quality of operators varies over time, often falling bellow acceptable limits
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and may result in errors with serious consequences. The likelihood of such
errors could be reduced if an objective method for assessment of human display-
monitoring performance were available.

A fundamental part in development of such method is to construct the model
reflecting the dependence between selected physiological metrics of mental work-
load (e.g., ERPs) and performance characteristics of human operator (reaction
time, accuracy and confidence). The main difficulty in such an effort is that due
to the character of measured data we are confronted with the curse of dimen-
sionality.

In this contribution we describe our attempt to overcome this problem using
projective data reduction technique (PCAR) and exploiting RBF network.

2 Methods

2.1 Data sample construction

ERPs reflect mental processes and are known to be related to human perform-
ance, including signal detection, confidence ratings, target identification and
recognition, memory, tracking and mental computation (see the references in
1))

We have used ERPs acquired in an earlier study [11], during signal detection
task from five male Navy technicians experienced in the operation of display sys-
tems. Each technician was trained to a stable level of performance and tested in
multiple blocks of 50-72 trials each on two separate days. Blocks were separated
by T-minute rest intervals. About 1000 trials were performed by each subject.
Inter-trial intervals were of random duration with a mean of 3 s and a range of
2.5-3.5 s. The entire experiment was computer-controlled and performed with
a 19-inch color CRT display (Figure 1).

Triangular symbols subtending 42 minutes of arc and of three different lu-
minance contrasts (0.17, 0.43, or 0.53) were presented parafoveally at a constant
eccentricity of 2 degrees visual angle. One symbol was designated as the tar-
get, the other as the non—target. On some blocks, targets contained a central
dot whereas the non—targets did not. However, the association of symbols to
targets was alternated between blocks to prevent the development of automatic
processing. A single symbol was presented per trial, at a randomly selected
position on a 2-degree annulus. Fixation was monitored with an infrared eye
tracking device. Subjects were required to classify the symbols as targets or
non-targets using button presses and then to indicate their subjective confidence
on a 3-point scale using a 3-button mouse. Performance was measured as a
linear composite of speed, accuracy, and confidence. A single measure, PF1,
was derived using factor analysis of the performance data for all subjects, and
validated within subjects. The computational formula for PF1 was

PF1 = 0.33%xAccuracy + 0.53%Confidence - 0.51xReaction Time



using standard scores for accuracy, confidence, and reaction time based on the
mean and variance of their distributions across all subjects. PF1 varied continu-
ously, being high for fast, accurate, and confident responses and low for slow,
inaccurate, and unconfident responses.

ERPs were recorded from midline frontal, central, and parietal electrodes
(Fz, Cz, and Pz; [7]), referred to average mastoids, filtered digitally to a band-
pass of .1 to 25 Hz, and decimated to a final sampling rate of 50 Hz. The
prestimulus baseline (200 ms) was adjusted to zero to remove any DC offset.
Vertical and horizontal electrooculograms (EOG) were also recorded. Epochs
containing artifacts were rejected and EOG-contaminated epochs were corrected
[5]. Furthermore, any trial in which no detection response or confidence rating
was made by a subject was excluded along with the corresponding ERP.

Within each block of trials, a running-mean ERP was computed for each trial
(Figure 2). Each running-mean ERP was the average of the ERPs over a window
that included the current trial plus the 9 preceding trials for a maximum of 10
trials per average. Within this 10-trial window, a minimum of 7 artifact-free
ERPs were required to compute the running-mean ERP. If fewer than 7 were
available, the running mean for that trial was excluded. Thus each running mean
was based on at least 7 but no more than 10 artifact-free ERPs. This 10-trial
window corresponds to about 30 s of task time. The PF1 scores for each trial
were also averaged using the same running-mean window applied to the ERPs,
excluding PF1 scores for trials in which ERPs were rejected. Prior to analysis,
the running-mean ERPs were clipped to extend from time zero (stimulus onset
time) to 1500 ms post—stimulus, for a total of 75 time points.

2.2 Choice of regressors

The first step in model development is the choice of regressors. In our case the
running-mean ERPs form the input variable x; and running-mean performance
factors PF1 form the output variable f(x;), where i = 1,2,..., N and N is the
number of ERPs for particular subject. The input variable x; is represented by
vector of dimension 225 ( 75 time points for each of 3 electrodes). The output
variable f(x;) is represented by a scalar.

Since, N gets values only between 400 and 900 (see Table 1, column ERPs)
we are confronted with the curse of dimensionality for the approximation of
multidimensional function f(x;). Tt was pointed out by Friedman and Stuetzle
[3] that although a general solution to problem of approximating d-dimensional
function is difficult, for many applications, good results can be obtained by
observing that in the sparse estimation data {x;, f(x;)}, {xi} are “concentrated”
in one or a small number of regions with dimensions much less than d. In such
cases the d-dimensional function, f(x), can be approximated by

K

f(x) = Zwkfk(PkX) (1)

k=1



where fi(.) is a function defined for the kth region, wy is its “weight” and Py
is the corresponding projection operator and a dy x d matrix, where d; < d.

In order to compare various projection operators the following steps have
been taken:

e For each electrode covariance-based PCA was computed and the 10 most
significant factors were chosen. Typically, they accounted for 73 — 82 % of
variance in the data. Factor scores were computed for each running-mean
ERP and stored for model development.

e AR modeling has been often used for feature extraction from EEG data
([6], [4],[13] ). ERPs from each electrode were parameterized by AR model
of order 10. The order of model was determined by Akaike’s final predic-
tion error criterion

FPE(k) =log(c}) %

where k is model order, 2 is the variance of residuals and p is the number
of observations.

e For subject D also the multiple-electrode covariance-based PCA was com-
puted and the 30 most significant factors, which accounted for 93 % of data
variance, were chosen. Factor scores were computed for each running-mean
ERP and stored for model development.

All of the above transformations reduced the dimension of input vector x;
from 225 to 30.

2.3 RBF networks

Results of J. Zhang et al. [14] indicate that in the case of “concentrated” data
good results may be achieved with RBF networks [1].
RBF network with n inputs and a scalar output is given by

f () = 3 Ao (llx = il

where x € R™ is the input vector, ¢(.) is a given basis function from R* to R, ||.||
denotes the Euclidean norm, A;, 0 < i < m, are the weights of basis functions,
c; € R?, 1 < i< m, are the RBF centers, and m is the number of basis functions.
The advantage of RBF networks is that when the centers ¢;, their number m and
shape of basis functions ¢(.) are all fixed they can be viewed as a special case of
linear regression model. Then it is possible to apply the orthogonal least squares
algorithm for subset selection. The algorithm has the property that each selected
center maximizes the increment of the explained variance of the approximated
function and does not suffer numerical ill-conditioning problems [2].



There are two ways of applying (1) to RBF network. The first scheme is
related to the classical principal-component analysis regression (PCAR) [10]
and has the following form:

e K =1and ¢, = 1;

e P, to be a matrix whose row vectors are the significant eigenvectors of the
covariance matrix of x,

e fi(.) be the RBF network

The second and more elaborate scheme is related to projection regression pursuit
regression (PPR) [3], in which ¢, fix(.) and Py are optimized to minimize the
training error. In this papers we have dealt only with PCAR, approach.

2.4 Linear regression models

Performance of RBF networks was compared with ordinary linear regression
models which have been constructed from PCA factors and AR coefficients us-
ing forward-selection stepwise approach (SAS PROC STEPWISE). F-ratio test

significance level a for including and removing regressors was set to 0.15.

2.5 Model validation

Both models, RBF networks and linear regression models, were validated using
10-fold cross-validation, i.e. running-mean ERPs gathered for each subject were
divided into 10 equally sized parts, and each part was used as a validation set
for a models build on remaining data.

3 Results

Simulations were implemented in MATLARB using the package of routines provided
by M. J. L. Orr [8]. In RBF networks thin-plate-spline function

o(v) = v? log(v)

was used as nonlinearity and direct links between input and output layer were
included in order to easily capture the linear properties in regressions [9]. The
quality of approximation was measured in terms of normalized mean square

error
2

NMSE = Z;}::l(f(xi) - Jf(xi))
k=1 (f(xi) = f(xi))

o

where



and N is the number of ERPs for particular subject.

Results are summarized in Tables 1 to 3. One can see that RBF networks per-
formed substantially better than linear models. The best results were achieved
with RBF networks using PCA representation (Table 1). The case of subject
D (Table 3) indicates that multi-electrode PCA representation provides only
a slight improvement over the separate electrode PCA, but this topic requires
further study.

4 Discussion

In this paper we have compared approximation capabilities of linear models and
RBF networks at an example of display-monitoring performance data. The ob-
tained results show that RBF networks represent an improvement over linear
regression models. However, this results were achieved at expense of com-
putational costs. For future study, it would be of an interest to examine the
application of PPR, wavelet networks proposed in [14].
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Figure 1: Display, input device configuration and symbols for task-relevant stim-
uli for the signal detection task.
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Figure 2: Running-mean ERPs at sites Fz, Cz and Pz for subject B in the first
50 running-mean ERPs.



Linear models RBF networks
Subj. | ERPs | Model order | Test set NMSE | Hidden units | Test set NMSE
mean (std) | mean (std) mean (std) | mean (std)
A 891 15 (3) 0.699 (0.029) 378  (56) 0.163  (0.030)
B 592 17 (3) 0.543  (0.046) 171 (42) 0.119  (0.028)
C 417 16 (1) 0.604 (0.113) 175 (26) 0.231 (0.050)
D 734 17 (2) 0.248 (0.027) 249 (109) | 0.080 (0.020)
E 776 19 (2) 0.553  (0.037) 249  (60) 0.175  (0.025)

Table 1: Comparison of approximation errors (NMSE) achieved at test set with
linear models and RBF networks using PCA representation. The values repres-
ent an average of 10 simulations with standard deviation in parentheses.

Linear models RBF networks
Subj. | ERPs | Model order | Test set NMSE | Hidden units | Test set NMSE
mean (std) | mean (std) mean (std) | mean (std)
A 891 12 (4) 0.836 (0.040) 436 (79) | 0.378 (0.106)
B 592 18 (4) 0.694 (0.100) 260 (52) | 0.384 (0.067)
C 417 6 (2) 0.799 (0.057) 197  (30) | 0.454 (0.161)
D 734 14 (3) 0.657 (0.077) 373 (53) | 0.372 (0.063)
E 776 6 (4) 0.861 (0.032) 286 (37) | 0.346 (0.052)

Table 2: Comparison of approximation errors (NMSE) achieved at test set with
linear models and RBF networks using AR representation. The values represent
an average of 10 simulations with standard deviation in parentheses.

Linear models RBF networks
PCA | Model order | Test set NMSE | Hidden units | Test set NMSE
mean (std) | mean (std) mean (std) | mean (std)
S 17 (2) 0.248 (0.027) 249  (109) | 0.080 (0.020)
M 25 (0) 0.308 (0.023) 234 (56) 0.069 (0.014)

Table 3: Comparison of approximation errors (NMSE) achieved at test set with
linear models and RBF networks using separate (S) electrode and multi-electrode
(M) PCA representation for subject D. The values represent an average of 10
simulations with standard deviation in parentheses.
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