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Abstract

A new method for the construction of non-
linear adaptive filters called adaptive sup-
port vector regression is introduced for sig-
nal detection in noisy environments. A mod-
ification of support vector regression for on-
line learning is motivated by the chunk-
ing approach and is based on repeated re-
training of the filter parameters without the
loss of former estimates. Performance of the
proposed method was found superior to the
method using a Resource-Allocating RBF
network with Givens QR decomposition and
pruning [8].

1 Introduction

Support Vector Regression (SVR) is a new
technique which has been applied success-
fully to regression and function estimation.
In [5] the superior performance of SVR is
compared to Radial Basis Function (RBF)
networks for noisy chaotic time-series pre-
diction. In [4] a comparison of SVR with
several existing approximation techniques
have been carried out.

An adaptive version of the SVR tech-
nique based on block-by-block re-training of
the SVR approximation of the chaotic time-
series was introduced in [2].

In this contribution we implement a mod-
ified adaptive SVR (ASVR) technique for
the construction of nonlinear adaptive fil-
ters and demonstrate its performance in
the detection of a chaotic Mackey-Glass
time-series in noisy conditions. We com-
pare ASVR with the modified Resource-
Allocating Networks method introduced in

[8]. We report encouraging results showing
the superior performance of the ASVR tech-
nique on a noisy chaotic time-series.

2 Support Vector Regres-
sion

The idea of the SVR technique is based on
computation of the linear regression func-
tion in a high dimensional feature space ¥
where the input data x are mapped via some
nonlinear function. Thus, the SVR prob-
lem can be defined as the determination of
function f(x,w) which approximates an un-
known desired function and has the follow-
ing form:

M
O, w) =D wihi(x) +b = (w(x)) +b,

where b and {w;}¥, are unknown coeffi-
cients, (w.(x)) is a dot product in M-
dimensional feature space ¥ (M < o). The
function f(x,w) represents a hyperplane in
feature space ¥ defined by the functions
{¢i}¥,. In [13] the following regularized
risk functional is stated to compute the un-
known coefficients b and {w;}M,:
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where Err = y; — f(x;,w), > 0 is a reg-
ularization constant to control the trade-off
between complexity and accuracy of the re-
gression model and

\Err. = 0 : |Err|<e
€ |Err| — € otherwise



is Vapnik’s e-insensitive loss function [13].
In [13] Vapnik also showed that the regres-
sion estimate that minimizes the risk func-
tional (1) has the form:

fxa) = Z(af—ai)(w(xi)-¢(X))+b

= Z(a; — a;)K(x,x) +b.

Lagrange multipliers {a;,a}}Y, satisfy
conditions a;, af > 0, a;af = 0and K (x,y)
is a kernel function, satisfying Mercer’s con-
dition!, which corresponds to a dot product
in feature space ¥:

K(x,y) = Z cithi(x)¥i(y),

where ¢; > 0 are positive coefficients. In
our study we used a translation invariant
_ 2
Gaussian kernel K(x,y) = ewp(—%)
The coefficients {a;,a}}Y | are obtained by

maximizing the quadratic form defined as
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To solve this optimization problem we used
a primal-dual interior point method de-
scribed in [11] and tailored to SVR problems
in [10]. The data points x; associated with
the coefficients «a;, @] satisfying optimizing
problem (2) are called support vectors (SV).

subject to YN, (e —
O‘i;a; € (07

3 Nonlinear Adaptive Fil-
ters

Nonlinear adaptive filters represent a class
of filters, which try to overcome the short-
comings of linear adaptive filters dealing
with data generated by physical processes
with nonlinear behavior. They incorporate

U [ K(x,y)9(x)g(y)dxdy > 0 for all g(.) # 0
and fR g2 (x)dx < oo [3]

some form of nonlinearity into their struc-
ture to account for such physical phenom-
ena which are quite common in practice?.
Moreover, in the case of nonstationarity or
quasi-stationarity of the input data opti-
mum filters have to assume a time-varying
form to adaptively model an unknown sys-
tem. There are several types of algorithms
for estimating parameters of nonlinear adap-
tive filters. Normally they use batch mode
computation, that means they compute the
filter parameters from predefined blocks of
observations. In the next sections we will
describe two types of nonlinear adaptive fil-
ters based on algorithms with a different,
on-line or quasi on-line, strategy for adapta-
tion of the structure and parameters of the
filters. The parameters and structure of the
filters are computed on new data or blocks of
data dynamically added during the learning
process without needing to recompute filters
on all previously available data subsets and
thus discarding previous estimates.

3.1 Adaptive Support Vector
Regression Filter

Vapnik in [12] proposed a chunking method
for SV estimation which tries to overcome a
well-known difficulty associated with batch
training of SVR on large data sets. The
chunking method is based on the fact that
having only SV (i.e. data points correspond-
ing to non-zero a;,a; coefficients) we will
achieve the same solution of the regression
problem as with the full data set. The prob-
lem is that we do not know the SV set before
solving the regression problem. The idea is
to compute SV on a smaller subset and add
to this subset the training data on which
the current regression model makes errors
(i.e. data with error larger than €). Then we
have to re-train data on the new subset and
iterate until all training data satisfies the re-
gression model represented by the selected
SV. In [6] a formal proof of the convergence
of the proposed chunking algorithm is given.

In our ASVR method we have been moti-
vated by the described chunking approach.
We initialize our ASVR filter by comput-
ing SV on first the Ny input data. In the
next step we dynamically introduce new in-

2Fundamentally, there are two types of nonlin-
ear adaptive filters, Volterra-based filters and filters
based on the artificial neural network approach [1].



put samples and compute outputs of the fil-
ter until the error of the L outputs does not
exceed the e-insensitive region of Vapnik’s
loss function (i.e. outputs lie outside the e-
tube). Then we simply re-train ASVR filter
on a data set which consists of the current
SV and input data points corresponding to
L “error” outputs. Smaller value of L allows
quicker adaptation of the filter but leads to
higher computational demands.

A similar ASVR method was introduced
in [2] however, the current SV and all data
segments on which the average approxima-
tion error exceeds a predefined value were
used for re-training.

3.2 Resource-Allocating RBF
Network

The idea of Resource-Allocating networks
(RAN) introduced by Platt [7] is based on
iterative center (neuron) allocation and pa-
rameters (positions and widths of the cen-
ters) and output-layer weights adaptation of
Radial Basis Function (RBF) networks dur-
ing the on-line learning process. The criteria
for adding a new center are satisfied if the
predefined accuracy® of the RAN outputs is
exceeded or if the Euclidean distance of in-
put from the nearest center is greater than
the predefined critical scale resolution. In [8]
the performance of RAN was improved by
introducing a recursive least-squares tech-
nique based on a Givens QR decomposition
(RAN-GQRD) for adaptation of the out-
put weights and by using a pruning strat-
egy for removing existing centers which have
an insignificant contribution to decreasing of
the overall output error. As was shown in
[8] RAN with GQRD and pruning (RAN-
P-GQRD) performed with the same predic-
tion accuracy as RAN-GQRD but with no
increase in the complexity of the network.

4 Experiments

In the case where only a data set with ad-
ditive noise is available one possible way to
detect a signal of interest is based on predic-
tion of the signal for time-lags beyond the
correlation length of the noise. For white
noise, a one-step-ahead adaptive linear pre-
dictor trained on noisy data will not be able

3Which in our experiments was chosen same as
e-insensitive parameter for ASVR filter.

to predict the noise and can only learn to
predict the signal of interest [1]. The use
of neural predictors with on-line learning
will lead to improved signal prediction ac-
curacy, however, without limiting their flexi-
bility the undesirable effect of noise tracking
on finite data segments can arise. One pos-
sible way to reduce this problem is based on
the ability of ASVR filter to tune the trade-
off between model complexity and accuracy
of approximation.

4.1 Noisy Mackey-Glass data

To compare performance of the proposed
filters to “pick-up” clean time-series from
noisy data sets we added different types
of noise to a generated Mackey-Glass time-
series. “Clean” chaotic Mackey-Glass time-
series is defined by the differential equation

s(t—1)

=-bs(t)+a

with a = 0.2, b = 0.1. We used the first 3103
data points (training part) of the data set
available from CMU Learning Benchmark
Archive 4.

The filters were then trained to predict
the values at time ¢+ 6 or ¢+ 85 from inputs
at time ¢, t—6, t— 12, and t — 18. We added
noise with normal (n) or uniform (u) dis-
tribution and with levels corresponding to
ratios of the standard deviation of the noise
and the “clean” Mackey-Glass time-series.
We tuned T parameter for RAN-P-GQRD
in the range (30,40), set A(0) = 0.99 and
used the same parameters as those reported
in [8]. For ASVR filter we used the following
parameters: 8 = 0.1, 02 = 0.75, Ng = 50
and L = 1. The e parameter was chosen
0.05 or 0.01. We observed, that pruning SV
“older” than 400 time steps did not signifi-
cantly influence our results for detection of
Mackey-Glass time-series, however, compu-
tational time was reduced.

4.2 Results

The quality of detecting the signal of inter-
est from learning on a noisy data set was
evaluated in terms of the normalized root

“http://www.boltz.cs.cmu.edu/bench.html. This
data was generated with 7 = 17 and using a second-
order Runge-Kutta method with a step size 0.1.



mean squared error (NRMSE) defined as

NRMSE()) = | | iz Weld) = n(0))”
L (ei) = 9e()?

mm=§z%m

where ¢, represents an estimation of the
signal of interest on noisy time-series and
y. the “clean” Mackey-Glass time-series, re-
spectively.

From Figures 1-5 we can see that on
the noisy time-series the performance of
the ASVR filter in detecting the signal of
interest was in terms of the NRMSE ap-
proximately 35% better. By using RAN-
P-GQRD method we are unable to track
signal of interest in noisy environment even
with noise of low level (Figure 2). ASVR
filter performs well in the case of noise with
low level (n=11%, u=10.3%) (Figure 2) but
with increasing level of the noise (n=17.7%,
u=18.1%) detection abilities are decreased
(Figure 1). Using prediction step ¢t + 6
(Figures 3 and 4) we achieved similar re-
sults but the ASVR filter was able to track
the signal of interest also in the case of
a higher noise level (n=17.7%, u=18.1%).
With € = 0.01 the performance of ASVR fil-
ter was increased but performance of RAN-
P-GQRD stayed approximately on the same
level (Figure 5). In all the cases the conver-
gence of the ASVR filter was significantly
faster than convergence of RAN-P-GQRD
approach. We did not observed a instability
of the proposed ASVR method.

5 Conclusions

In this paper the adaptive support vector re-
gression filter was used for signal detection
problems. The filter showed superior per-
formance on the detection of chaotic time-
series corrupted by noise when compared to
the modified Resource-Allocating RBF net-
work technique.

We introduced a strategy, based on the
chunking approach, for on-line selection of
the data points for re-training of the filter.
Although, no proof of the convergence of the
method is provided in this paper, we ob-
served that on longer stationary data seg-
ments the method can be applicable in prac-
tice.

One of the open questions which remains
is the appropriate prior choice of the € and
parameters. Recently, in [9] anew »-SVR al-
gorithm and parametric insensitivity models
were proposed for automatic accuracy con-
trol. However, in noisy environments a pri-
ori knowledge of the general signal and noise
statistics is still required.

Promising results encourage us to use the
ASVR filter for the other problems of non-
linear adaptive filtering which will be stud-
ied in our future work.
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Figure 1: Detection accuracy of RAN-P-
GQRD and ASVR in terms of NRMSE (e =
0.05, prediction ¢ + 85, n-normal and u-uniform
noise, respectively.)
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Figure 2: Detection accuracy of RAN-P-
GQRD and ASVR in terms of NRMSE (e =
0.05, prediction t + 85, n-normal and u-uniform
noise, respectively.)
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Figure 3: Detection accuracy of RAN-P-
GQRD and ASVR in terms of NRMSE (e =
0.05, prediction ¢ + 6, n-normal and u-uniform
noise, respectively).
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Figure 4: Detection accuracy of RAN-P-
GQRD and ASVR in terms of NRMSE (e =
0.05, prediction ¢ + 6, n-normal and u-uniform
noise, respectively).
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Figure 5: Detection accuracy of RAN-P-
GQRD and ASVR in terms of NRMSE (e =
0.01, prediction ¢ + 6, n-normal and u-uniform
noise, respectively).



