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Abstract

The proposal of considering nonlinear principal component analy-
sis as a kernel eigenvalue problem has provided an extremely powerful
method of extracting nonlinear features for a number of classification
and regression applications. Whereas the utilization of Mercer kernels
makes the problem of computing principal components in, possibly, in-
finite dimensional feature spaces tractable, there are still the attendant
numerical problems of diagonalizing large matrices. In this contribu-
tion we propose an expectation maximization approach for performing
kernel principal component analysis and show this to be a computa-
tionally efficient method especially when the number of data points is
large.

1 Introduction

The notion of performing linear Principal Component Analysis (PCA) in
a high (and possibly infinite) dimensional nonlinear feature space was first
proposed in (Scholkopf et al., 1998). The key feature of the proposed method
is the creation of the kernel matrix (Scholkopf et al., 1998) and its subsequent
diagonalization. Each element of the kernel matrix is composed of the dot
product of the nonlinearly mapped data points, and the elegant use of Mercer
kernels allows these dot products in high dimensional feature space to be
computed using simple kernel functions in data space (Scholkopf et al., 1999;
Scholkopf et al., 1998). The dimension of the kernel matrix is equal to the



number of data points and so its diagonalization allows nonlinear principal
components to be extracted from the data, the number of which may be
up to the number of observed data points. This implies that the number of
principal components extracted can exceed the dimensionality of the data
(Scholkopf et al., 1998).

In practice however if there is a substantial number of observations then
the diagonalization of the associated kernel matrix can be somewhat prob-
lematic in terms of computational demands and numerical accuracy (Jolliffe,
1986; Rosipal et al., 2000). The problem of performing an eigenvalue decom-
position on large covariance matrices can be alleviated by using the Expecta-
tion Maximization (EM) approach for PCA which emerges from considering
PCA from a probabilistic perspective (Tipping & Bishop, 1999; Roweis &
Ghahramani, 1999). Taking the EM approach to PCA in data space we
now show that this can be modified to allow the efficient computation of the
Kernel PCA (Scholkopf et al.,1998).

2 An EM Approach to Kernel PCA

The data space model for probabilistic PCA is given as y = Cx + v where
C € RP*F and the observation vector and latent variable vectors are given
as y € RP and x € R*, respectively. The latent variables are normally
distributed with zero mean and identity covariance. The zero mean noise
v is also normally distributed with a covariance matrix defined as ¥. It
is shown in (Roweis & Ghahramani, 1999; Tipping & Bishop, 1999) that
as the noise level in the model becomes infinitesimal the PCA model is
recovered. The posterior density then becomes a delta function P(x|y) =
§(x — (CTC)~1CTy) and the EM algorithm is effectively a straightforward
least squares projection (Roweis & Ghahramani, 1999) which is given below.
We denote the matrix of data observations as Y € RP*™ and the matrix of
latent variables as X € R¥*", Then
E-Step X = (CTC)"'CcTY
M-Step C™* = YXT(XXT)~1

We now wish to transform this EM procedure to feature space F. The
implicit nonlinear map from input space to F is denoted as ®(.) (Scholkopf
et al., 1998). For clarity of exposition we now denote the matrix Y to be
the matrix which has individual columns consisting of the following vectors
®(y1),...,P(yy) of the mapped observed data.

Centering in the feature space can be carried out in a straightforward



manner by “centering” the kernel matrix K (which is defined below) using
the simple procedure which is outlined in (Schélkopf et al., 1998). Real-
izing that the columns of C are scaled and rotated eigenvectors computed
by diagonalization of the sample covariance matrix we can express the r?
column of C as C" = 377, 7JT<I>(yj) (Tipping & Bishop, 1999; Scholkopf et
al., 1998). Using this fact we can write the (r, s) element of the matrix CTC
as

(CTC)'I‘,S = (CT)TCS = z 1% q)T(yZ) ] 1 7y @(YJ)
= Ezn,jzl vaj(é(y’l) ( )) Eng 1% 7]K(ylay])
Which gives in matrix form CTC = ' KT, where the columns of the matrix

T € R™*k consists of the {y}¥_, vectors. Likewise the second term of the
E-step expression can be written as follows,

(CTY Z')’:(I)T yi))@(ys) = nyz’-"(CI)(y Z'Yz (¥ir¥s),
i=1

=1

then (CTY) = I'TK. So, finally we have the required E-step

X = (I'"Kr)~'r’'K

Now let us consider the M-Step. Denote the following term as follows
A = XT(XXT)~1. As a consequence of the fact that the columns of C lie
in the span of ®(y1),...,®(y,) we can consider the set of equations

3T (y,)C" = & (y;,)YA forall j=1,...,n
> 7 K(y;, i), Z% (v, ¥) | = [K(yj,¥1)5---, K(yj, yn)] A

for all 5 = 1,...,n. We can write it in matrix form KI'**¥ = KA'. The
M-step then follows as below.

Imew — A — XT(XXT)_I

It has been shown in (Tipping & Bishop, 1999) that in the case of infinites-
imal noise in our model, i.e. ¥ = lim,2_,,0°I, the matrix C at convergence

In general, K is a positive semidefinite matrix, however we can guarantee positive
definiteness by adding arbitrary small positive values on the diagonal.



will be equal to C = UAY2R, where the columns of the U matrix are the
eigenvectors of the sample covariance matrix with corresponding eigenvalues
A, ..., Ax creating the diagonal matrix A, and R is an arbitrary orthogonal
rotation matrix. In (Tipping & Bishop, 1999) the authors also pointed out
that taking the columns of RT to be equal to the eigenvectors of the CTC
matrix we can recover the true principal axes. Thus, in our case the projec-
tion of the test point y onto the k£ nonlinear principal components is now
given by

B(y) :=R(C"C)"'C"®(y) = R(I"KT) 'T"K, ,

where K, is the “centered” vector [K(y1,¥), ..., K(¥n,¥)]? (Schélkopfet al.,
1998).

We should note a number of points regarding this method for perform-
ing Kernel PCA. Firstly, due to the use of the Mercer kernels the method is
independent of the dimensionality of the input space. Secondly, the compu-
tational complexity, per iteration, of the proposed EM method for Kernel
PCA is O(kn?) where n is the number of data points and k is the number of
extracted components. Where a small number of eigenvectors require to be
extracted and there are a large number of data points available this method
is comparable in complexity to the iterative power method which has com-
plexity O(n?). Direct diagonalization of a symmetric K matrix to solve the
eigenvalue problem for Kernel PCA (Schélkopf et al., 1998) has complexity
of the order O(n?).

3 Experiments

We tested the proposed EM algorithm for Kernel PCA on two artificial
two dimensional data sets. Thus, by projecting the test input data to the
extracted principal components we can visually compare the results even
although we may have the situation where the non-linear mapping to fea-
ture space is not explicitly known. In the first example we generated two
parabolic shapes vertically and horizontally mirrored. The data were gen-
erated by the function y = 22 + 0.6 where the z values have a uniform
distribution in [—1,1]. We used 500 data points uniformly divided for each
parabolic shape. The polynomial kernels of degree 2 and 3 were used.

In the second example three two-dimensional Gaussian clusters with
means [-0.5, -0.2; 0.0, 0.6; 0.5, 0.0] and common variance 0.1 were gen-
erated. Each cluster consisted of five hundred data points. The Gaussian



kernel K(x,y) = exp(—”xa%”z) was used. In each case the initial values of
the T matrix components were randomly generated with uniform distribu-
tion in [—1, 1].

From Fig. 1a) and 1b) we can see the equivalence of the first two eigen-
vectors found by our EM approach (bottom)and the MATLAB eig pro-
cedure (top) in the case of using the polynomial kernel of degree 2. We
ran the EM algorithm until the dot product between the eigenvectors of
the 2-dimensional subspace found by EM and Kernel PCA was less than
0.999 (appr. 2.5°). In this setting we found that on average less than two
EM steps were sufficient to extract the two required eigenvectors. We also
investigated the convergence of the proposed algorithm by running 200 sim-
ulations with different initializations of the I' matrix. The average value
of the dot product between the eigenvectors of the 2-dimensional subspace,
which were found, was 0.995 (appr. 5.7°). In six cases we observed that at
convergence the dot product was less than 0.98 (appr. 11.5°), but greater
than 0.96 (appr. 16.2°). Slightly better convergence results were achieved
using the third-order polynomial kernel. In that case the average value of
the dot product was 0.998 (appr. 3.6°) and only in four cases the value of
the dot product were in the 0.96 — 0.98 range. The use of the MATLAB eig
function requires 646 times the number of flops required by the proposed
EM approach. The MATLAB eigs function? which is based on the iterative
power method still requires 5.8 times as many flops as two iterations of our
EM method.

In Fig. 1c) we demonstrate results found in the second example using
three EM steps. We can see that first two principal components nicely
separate the three clusters in coincidence with results reported on Kernel
PCA (Scholkopf et al., 1998).

4 Conclusion

We have proposed an EM based approach for performing a principal compo-
nents decomposition in the kernel space F. This provides another method
for performing kernel based principal component analysis which, in many
cases, is extremely efficient in terms of the computing resources required.
Further work in this area includes the study of the convergence behaviour
of the EM approach to nonlinear kernel based PCA.

2The default MATLAB setting with convergence tolerance equal to 1 x 10™'° was used
here.



Figure 1: a)-b) First two principal components extracted by diagonalization of the
K matrix (top) and by the proposed EM algorithm (bottom) on the first exam-
ple using the second-order polynomial kernel. ¢) First two principal components
extracted by the proposed EM algorithm on the second example. The greyscales
in the figures represent the principal component values and the contours represent
lines of constant principal component value.
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