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Abstract

This paper summarizes recent results on applying the method of par-
tial least squares (PLS) in a reproducing kernel Hilbert space (RKHS).
A previously proposed nonlinear kernel-based PLS regression model has
proven to be competitive with other regularized regression methods in
RKHS. In this paper the use of kernel PLS for discrimination is discussed.
A new methodology for classification is then proposed. This is based on
kernel PLS dimensionality reduction of the original data space followed by
a support vector classifier. Good results using this method on a two-class
classification problem are reported here.
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1 Introduction

The partial least squares (PLS) method [18, 19] has been a popular modeling,
regression, discrimination and classification technique in its domain of origin—
chemometrics. In its general form PLS creates orthogonal score vectors (com-
ponents, latent vectors) by using the existing correlations between different sets
of variables (blocks of data) while also keeping most of the variance of both sets.
PLS has proven to be useful in situations where the number of observed vari-
ables is much greater than the number of observations and high multicollinearity
among the variables exists. This situation is also quite common in the case of
kernel-based learning where the original data are mapped to a high-dimensional
feature space corresponding to a reproducing kernel Hilbert space (RKHS). Mo-
tivated by the recent results in kernel-based learning and support vector ma-
chines [15, 13] the nonlinear kernel-based PLS methodology was proposed in
[10]. This paper summarizes these results and show how the kernel PLS ap-
proach can be used for modeling relations between sets of observed variables,
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regression and discrimination in a feature space defined by the selected non-
linear mapping—kernel function. Further, a new algorithm for classification is
proposed. This is based on a combination of the kernel PLS method with a
support vector machine for classification (SVC) [15, 13]. The advantage of us-
ing kernel PLS for dimensionality reduction in comparison to kernel principal
components analysis (PCA) [14, 13] is discussed in the case of discrimination
problems.

2 RHKS - basic definitions

A RKHS is uniquely defined by a positive definite kernel function K(x,y);
that is, a symmetric function of two variables satisfying the Mercer theorem
conditions [6, 13]. Consider K(.,.) to be defined on a compact domain X X
X; X C RN. The fact that for any such positive definite kernel there exists a
unique RKHS is well established by the Moore-Aronszajn theorem [1]. The form
K(x,y) has the following reproducing property

fx) =(f(y), K&xy)n VfeH

where (., .)3 is the scalar product in H. The function K is called a reproducing
kernel for H.

It follows from Mercer’s theorem that each positive definite kernel K (x,y)
defined on a compact domain X x X can be written in the form

s
Y) =D Xidi(x)dily) S <oo (1)
i=1
where {¢;(.)}7_, are the eigenfunctions of the integral operator ' : Lo(X) —

Ly(X)
(Txf)(x /f K(x,y)dy Vfe LX)

and {\; > 0}, are the corresponding positive eigenvalues. Rewriting (1) in
the form

S
= Z VAidi()VAGi(y) = (B(x).2(y)) = 2(x)"e(y)  (2)

it becomes clear that any kernel K(x,y) also corresponds to a canonical (Eu-
clidean) dot product in a possibly high-dimensional space F where the input
data are mapped by

d: X - F
X—= (\/)\_l(bl(x)7 \/)\_2¢2(X)7 B \/E(és(x))



The space F is usually denoted as a feature space and {{v/\;i¢;(x)}7_,,x €
X} as feature mappings. The number of basis functions ¢;(.) also defines the
dimensionality of F. It is worth noting that a RKHS and a corresponding
feature space can be constructed by choosing a sequence of linearly independent
functions (not necessarily orthogonal) {¢;(x)}5_; and positive numbers a; to
define a series (in the case of S = oo absolutely and uniformly convergent)

K(x,y) = Y0, eaGi(x)¢i(y)-

3 Kernel Partial Least Squares

Because the PLS technique is not widely known, first, a description of linear PLS
is provided. This will simplify the next description of its nonlinear kernel-based
variant [10].

Consider a general setting of the linear PLS algorithm to model the relation
between two data sets (blocks of observed variables). Denote by x € X ¢ RY
an N-dimensional vector of variables in the first block of data and similarly
y € Y C RM denotes a vector of variables from the second set. PLS models
the relations between these two blocks by means of score vectors. Observing n
data samples from each block of variables, PLS decomposes the (n x N) matrix
of zero mean variables X and the (n x M) matrix of zero mean variables Y into
the form

X =TP" +F 5
Y=UQ"+G (3)

where the T, U are (nxp) matrices of the extracted p score vectors (components,
latent vectors), the (N x p) matrix P and the (M X p) matrix Q represent
matrices of loadings and the (n x N) matrix F and the (n x M) matrix G are
the matrices of residuals. The PLS method, which in its classical form is based
on the nonlinear iterative partial least squares (NIPALS) algorithm [18], finds
weight vectors w, ¢ such that

[cov(t,u)]? = [cov(Xw, Yc)]? = maac|r|=‘s|=1[cm}(Xr,Ys)}2

where cov(t,u) = tTu/n denotes the sample covariance between the score vec-
tors t and u. The NIPALS algorithm starts with random initialization of the
Y-score vector u and repeats a sequence of the following steps until convergence:

w=XTu/(uTu) 4)c=Y7Tt/(tTt)
2) wl —1 5) e — 1
3)t=Xw 6)u=7Yc

However, it can be shown that the weight vector w also corresponds to the first
eigenvector of the following eigenvalue problem [4]

XTYYTXw = \w (4)



The X-scores t are then given as
t=Xw (5)

Similarly, eigenvalue problems for the extraction of t,u and c estimates can be
derived [4]. The nonlinear kernel PLS method is based on mapping the original
input data into a high-dimensional feature space F. In this case the vectors
w and c cannot be usually computed. Thus, the NIPALS algorithm needs to
be reformulated into its kernel variant [5, 10]. Alternatively, the score vectors
t can be directly estimated as the first eigenvector of the following eigenvalue
problem [4, 8] (this can be easily shown by multiplying both sides of (4) by X
matrix and using (5))

XXTYYTt = Xt (6)

The Y-scores u are then estimated as
u=YY"t (7)

Now, consider a nonlinear transformation of x into a feature space F. Using
the straightforward connection between a RKHS and F, Rosipal and Trejo [10]
have extended the linear PLS model into its nonlinear kernel form. Effectively
this extension represents the construction of a linear PLS model in F. Denote
® as the (n x 5) matrix of mapped X-space data ®(x) into an S-dimensional
feature space F. Instead of an explicit mapping of the data, property (2) can
be used resulting in

K= 33"

where K represents the (n x n) kernel Gram matriz of the cross dot products
between all input data points {®(x;)}7~,; that is, K;; = K (x;,x;) where K(.,.)
is a selected kernel function. Similarly, consider a mapping of the second set
of variables y into a feature space F; and denote by ¥ the (n x S;) matrix of
mapped Y-space data ¥(y) into an S;-dimensional feature space F;. Analogous
to K define the (n x n) kernel Gram matrix K;

K, =097

given by the kernel function K (.,.). Using this notation the estimates of t (6)
and u (7) can be reformulated into its nonlinear kernel variant

KK it =\t
u = Klt (8)

Similar to linear PLS, a zero mean nonlinear kernel PLS model is assumed.
To centralize the mapped data in a feature space F the following procedure
must be applied [14, 10]

1 1
K« (In - _1n1£)K(In - _1n13;> (9)
n n



where I, is an n-dimensional identity matrix and 1,, represents a (n x 1) vector
with elements equal to one. The same is true for Kj.

After the extraction of new score vectors t,u the matrices K and Ky are
deflated by subtracting their rank-one approximations based on t and u. The
different forms of deflation correspond to different forms of PLS (see [17] for a
review). The PLS Mode A is based on rank-one deflation of individual block
matrices using corresponding score and loading vectors. This approach was
originally design by H. Wold [18] to model the relations between the different
blocks of data. Because (4) corresponds to the singular value decomposition
of the transposed cross-product matrix X7Y, computation of all eigenvectors
from (4) at once involves a sequence of implicit rank-one deflations of the over-
all cross-product matrix. Although the weight vectors {w;}’_; will be mutually
orthogonal the corresponding score vectors {t;}?_;, in general, will not be mu-
tually orthogonal. The same is true for the weight vectors {c;}?_; and the score
vectors {u;}¥_;. This form of PLS was used by Sampson et al. [12] and in
accordance with [17] it is denoted as PLS-SB. The kernel analog of PLS-SB
results from the computation of all eigenvectors of (8) at once. PLS1 (one of
the blocks has single variable) and PLS2 (both blocks are multidimensional)
generally used as regression methods use a different form of deflation. This is
described in the next section.

3.1 Kernel PLS Regression

In kernel PLS regression a linear PLS regression model in a feature space F is
considered. The data set ) represents a set of dependent output variables and
in this scenario there is no reason to nonlinearly map y variables into a feature
space Fi. This simply means that K; = YY7? and F1 is the original Euclidian
RM space. In agreement with the standard linear PLS model it is assumed that
the score variables {t;}?_, are good predictors of Y. Further, a linear inner
relation between the scores of t and u is also assumed; that is,

U=TB+H

where B is the (p x p) diagonal matrix and H denotes the matrix of residuals.
In this case, the decomposition of the Y matrix (3) can be written as

Y =UQ" +F=(TB+H)Q" + F=TBQ" + (HQ" +F)
which defines the considered linear PLS regression model
Y =TC" +F*

where CT = BQT now denotes the (p x M) matrix of regression coefficients
and F* = HQ” + F is the Y-residual matrix.



Taking into account normalized scores t the estimate of the PLS regression
model in F is defined as [10]

Y = KU(TTKU)'TTY = TTTY (10)

It is worth noting that different scalings of the individual Y-score vectors {u,}’_,
do not influence this estimate. The deflation in the case of PLS1 and PLS2 is
based on rank-one reduction of the ® and Y matrices using a new extracted
score vector t at each step. It can be written in the kernel form as follows [10]

K« (I, - ttHK(T, —tt7) , K; «— (I, — tt")K; (I, — tt7)

This deflation is based on the fact that the ® matrix is decomposed as ® «—
® — tp? = & — ttT®, where p is the vector of loadings corresponding to
the extracted score vector t. Similarly for the Y matrix it can be written
Y « Y —tc” =Y —tt7Y. In the case of PLS1 and PLS2 score vectors {t;}?_;
are mutually orthogonal. In general, this is not true for {u;}r_; [4].

Denote d”™ = U(TTKU)'TTY™ | m = 1,..., M where the (n x 1) vector
Y™ represents the m-th output variable. Then the solution of the kernel PLS
regression (10) for the m-th output variable can be written as

grx,d™) =) diK (x,%;)
i=1
which agrees with the solution of the regularized form of regression in RKHS
given by the Representer theorem [16, 10]. Using equation (10) the kernel PLS
model can also be interpreted as a linear regression model of the form

P
" (x,€™) = c"ti(x) + cy'ta(x) + ..+ p'ty(x) = Z cti(x)
i=1

where {t;(x)}!_; are the projections of the data point x onto the extracted p
score vectors and ¢ = TTY™ is the vector of weights for the m-th regression
model.

It is worth noting that the score vectors {t;}}_; may be represented as func-
tions of the original input data x. Then, the proposed kernel PLS regression
technique can be seen as a method of sequential construction of a basis of or-
thogonal functions {¢;(x)}?_, which are evaluated at the discretized locations
{x;},. It is also important to note that the scores are extracted such that they
increasingly describe overall variance in the input data space and more inter-
estingly also describe the overall variance of the observed output data samples.

3.2 Kernel PLS Discrimination

Consider the ordinary least squares regression with outputs Y to be an indicator
vector coding two classes with two different labels representing class member-
ship. The regression coefficient vector from the least squares solution is then



proportional to the linear discriminant analysis (LDA) direction [3]. Moreover,
if the number of samples in both classes is equal, the intercepts are the same
resulting in the same decision rules. This close connection between LDA and
least square regression motivates the use of PLS for discrimination. Moreover,
a very close connection between Fisher’s LDA (FDA) and PLS methods for
multi-class discrimination has been shown in [2]. Using the fact that PLS can
be seen as a form of penalized canonical correlations analysis (CCA)!

[cov(t, u)]? = [cov(Xw, Yc)]? = var(Xw)[corr(Xw, Yc)]*var(Yc)

it was suggested [2] to remove the not meaningful Y-space penalty var(Yc)
in the PLS discrimination scenario where the Y-block of data is coded in the
following way

1,, 0, ... 0,
v 9n2 .1n2 oo 0y,

: : oL,

0n, On, ... Op,

Here, {n;}7_, denotes the number of samples in each of the g classes and 0,, is
a (n; x 1) vector of all zeros. This modified PLS method is then based on eigen
solutions of the between classes scatter matrix which connects this approach
to CCA or equivalently to FDA [3, 2]. Interestingly, in the case of two classes
the direction of only one PLS-SB score vector will be identical with the first
PLS score vector found by the PLS1 method with the Y-block represented by
the vector with dummy variables coding two classes. However, in the case of
PLS1 additional score vectors each possessing the same similarity with direc-
tions computed with CCA on deflated X-block matrices can be extracted. This
provides a more principled dimensionality reduction in comparison to standard
PCA based on the criterion of maximum data variation in the X-space alone.

On several classification problems the use of kernel PCA for dimensionality
reduction or de-noising followed by linear SVC computed on the reduced F-space
data representation has shown good results in comparison to nonlinear SVC
using the original data representation [13, 14]. However, previous theoretical
results suggest to replace the kernel PCA data preprocessing step with the more
principled kernel PLS. In comparison to nonlinear kernel FDA [7, 13] this may
become more suitable in the situation of non-Gaussian class distribution in a
feature space F. The advantage of using linear SVC as the follow up step is
motivated by the construction of an optimal separating hyperplane in the sense
of maximizing of the distance to the closest point from either class [15, 13].
Moreover, when the data are not separable the SVC approach provides a way to
control the extent of this overlap. Alternatively, other methods for classification
(for example, LDA, logistic regression) applied on extracted PLS score vectors
can be considered.

In agreement with previous notation var(.) and corr(.,.) denotes the sample variance and
correlation, respectively.



Method |
avg. error [%)] |

| KPLS-SVC | C-SVC | KFDA | RBF
106 £0.5 |11.5+0.7 [ 108 0.5 [ 10.8 £ 0.6

Table 1: Comparison between kernel PLS with v-SVC (KPLS-SVC), C-SVC, kernel
FDA (KFDA) and a radial basis function classifier (RBF) on the Banana data set. The
results represent average and standard deviation of the misclassification error using
100 different test sets.

4 Experiments

On an example of a two-class classification problem (Fig. 1(left)) good results
are demonstrated using the proposed combined method of nonlinear kernel-
based PLSI score vectors extraction and the subsequent linear v-SVC [13]
(denote this method KPLS-SVC). The used Banana data set was obtained
via http://www.first.gmd.de/“raetsch. This data repository provides the
complete 100 partitions of training and testing data used in previous exper-
iments [9, 7]. The repository also provides the value of the Gaussian ker-
nel K(x,y) = exp(—||x — y||?/h) width parameter (h) found by 5-fold cross-
validation (CV) on the first five training data partitions and used by the C-SVC
[13] and kernel FDA methods [7], respectively (on this data set the 5-fold CV
method results in the same value of the width for both of the methods, h = 1).
Thus, in all experiments the Gaussian kernel with the same width has been used
and the same CV strategy has been applied for the selection of the number of
used kernel PLS score vectors and the values of v parameter for v-SVC. The
final number of score vectors and v value was set to be equal to the median of
the five different estimates.

Table 1 compares the achieved results with the results using different meth-
ods but with identical data partitioning [9, 7]. Good results of the proposed
KPLS-SVC method can be seen. Further, the influence of the number of se-
lected score vectors on the overall accuracy of KPLS-SVC has been investigated.
For the fixed number of score vectors extracted using the data from the whole
training partition the ”optimal” value of the v parameter was set based on the
same CV strategy as described above. Results in Fig. 1(right) show that when
more than five kernel PLS score vectors are selected the method provides very
consistent, low misclassification rates. Finally, Fig. 2 depicts the projection of
the data from both classes onto the direction found by kernel FDA, using the
first score vector found by kernel PLS and the first principal component found
by kernel PCA, respectively. While similarity and nice separation of two classes
in the case of kernel FDA and kernel PLS can be seen, the kernel PCA method
fails to separate the data using the first principal component.
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Figure 1: left: An example of training patterns (the first training data partition was
used). right: Dependence of the averaged test set misclassification error on a number
of PLS score vectors used. The standard deviation is represented by the dotted lines.
For a fixed number of score vectors cross-validation (CV) was used to set v parameter
for »-SVC. The cross point indicates the minimum misclassification error achieved.
Asterisk indicates a misclassification error when both, number of score vectors and v
value were set by CV (see Table 1).

5 Conclusions

A summary of the kernel PLS methodology in RKHS was provided. It has been
shown that the method may be useful for modeling of the existing relations
between blocks of observed variables. With specific arrangement of one of the
blocks of variables the technique can be used for nonlinear regression or dis-
crimination problems. It also has been shown that the proposed technique of
combining dimensionality reduction by means of kernel PLS with classification
using SVC methodology may result in performance comparable with the previ-
ously used classification techniques. More detail experimental study confirming
this observation was recently published in [11]. Moreover, the projection of the
high-dimensional feature space data onto a small number of necessary PLS score
vectors resulting in optimal or near optimal discrimination gives rise to the pos-
sibility of visual inspection of data separability providing more useful insight
into the data structure. Following the theoretical and practical results reported
in [2] it is also argued that kernel PLS would be preferred to kernel PCA when
a feature space dimensionality reduction with respect to data discrimination is
employed.
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Figure 2: The values of top: data projected onto the direction found by kernel Fisher
discriminant middle: the first kernel PLS score vector bottom: the first kernel PCA
principal component. The data depicted in Fig. 1(left) were used.
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