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Abstract. One of the main problems associated with artificial neural networks on-
line learning methods is the estimation of model order. In this paper, we report
about a new approach to constructing a resource-allocating radial basis function
network exploiting weights adaptation using recursive least-squares technique based
on Givens QR decomposition. Further, we study the performance of pruning strategy
we introduced to obtain the same prediction accuracy of the network with lower
model order. The proposed methods were tested on the task of Mackey-Glass time-
series prediction. Order of resulting networks and their prediction performance were
superior to those previously reported by Platt [12].
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1. Introduction

The resource-allocating network (RAN) was introduced by Platt [12]
and further extended by Kadirkamanathan and Niranjan [7], McLach-
lan and Lowe [11]. Since RANs are based on radial basis function (RBF)
networks, two essential problems — weights adaptation and center selec-
tion — need to be solved.

Our approach to this task can be characterized by the following
features:

— center allocation using Platt’s method,

— adaptation of output-layer weights using Givens QR decomposition
(GQRD) algorithm for recursive least-squares estimation [8],

— introduction of a pruning strategy for existing centers based on
monitoring error-reduction proportion of individual centers.

Generally, RAN allocates far fewer centers than is the number of pre-
sented examples, but it can lead to exaggerated number of centers in
the case of long period data sequence [12]. Our modification prevents
this undesirable effect and thus holds complexity of the network on the
“low” level.
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2. Methods
2.1. RBF NETWORK

A two-layer RBF network implements a mapping ¢ : R™ — R according
to

N,
§="bo+ Y bidi([lx — cil| /h)

=1

where x € R" is an input vector, ¢;(.) is the transfer function, h; is
the i-th center width, ||.|| denotes the Euclidean norm, b; € R are the
weights, ¢; € R™ represent the positions of RBF centers, and N, is the
number of centers. In our study Gaussian transfer function was used.

2.2. CENTER ALLOCATION AND LEARNING STRATEGY

The network starts to learn with no centers. The condition for allo-
cating a new center at (discrete) time j exploits two criteria pro-
posed by Platt [12]. The first criterion is based on prediction error
le(7)] = |y(j) — 9(4)|, where y(j) is desired output. Error is compared
with the critical value €. The second criterion is satisfied if the Fuclidean
distance of input x(j) from the nearest center ¢ eqres¢ is greater than
the critical scale resolution 6(j). The learning starts with the largest
scale of resolution, i.e. 6(0) = 64z, and § is multiplied at each time
step by a decay constant 0 < v < 1 until it reaches the smallest value
Omin. If both criteria are satisfied, a new center is set as

Cnew(j) = X(])
with width

Pnew = I{HX(]) - Cnearest(j)H2 ’

where k is a constant, and corresponding output weight

brcw(j) = €(j) -

LMS gradient descent is used to update positions of the centers

Aci(j) = Q(h')Q (x(J) = ei(4))pd(x(7))e(5)bi7)
where a > 0 is the learning factor.
Summary of the network learning strategy can be described with

the following pseudo-code:
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8(0) = bmaz, b0(0) = y(0), N, =0, set ¢
for j = 1 to number of iterations {
present a new input-output pair (x(5), y(j))
evaluate output of network §(j) = bo(j) + Zf\;rl bi ()i (x(4))
compute error e(5) = y(j) — v(j)
find distance to nearest center d = minj<;<y;, ||¢i(j) — x(j)]|
if le(4)] > € and d > 4())
allocate new center: N, = N, + 1, ¢y, (j) = x(j),

| b, (5) = e(§), hn, = rd®
~Update(bo(j), {6: (), Cz(])}i&)
6(j + 1) = vo(j)

Our research confirmed the fact revealed by McLachlan [10], that
after adding a new center it is appropriate, for T time steps, just to
adapt parameters of the network and not to allow another center allo-
cation. The restriction is motivated by increase of the output error
observed after adding a new center and thus indicating another center
allocation.

2.3. WEIGHTS ADAPTATION

The on-line adaptation of output-layer weights b = [bg, by, -, by, ]T
can be formulated as a problem of finding a weights vector b which
minimizes some performance criterion. A very popular criterion is the
quadratic function defined at time ¢ as

t

Vi(b) = > wi(5)e*(j[b) (1)

=0

where e(j|b) is the error signal at time j defined as e(j|b) = y(j) —
9(j|b) and wy(j) is a window function imposed on the error signal
to reflect time-varying significance of past and recent information. A
popular choice of the window function is the exponential window

wt(]) = At_j ’

where 0 < \ < 1 is a forgetting factor 1.
It is obvious that from the viewpoint of weights adaptation, the RBF
network can be understood as a special case of linear regression model

y(t) = ®(1)b(1) +e(1) , (2)
1 Tt is necessary to note that in the case of non-stationary data, the application

of the forgetting factor might improve estimate of the weights, but convergence is
not guaranteed (see, e.g. [8]).
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where y(t) = [y(1), y(2),- ., (O], e(t) = [e(1), el(2),..., e(t)]T, (1)
is ¢ x (N, 4+ 1) matrix whose transpose ®7(t) = [¢(1),$(2),...,9(t)],
in which ¢(j) = [1,¢1(j),...,0n,.(j)]T is a (N, + 1) x 1 vector of the
hidden-layer outputs ( + bias term) at time j. Using the criterion (1),
the determination of b(¢) is a least-squares problem which leads to
recursive solving of normal equations of the form [8]

S(1)TA(1)@(1)b(1) = B()T A1)y (1) , (3)

where A(t) = diag[\'=1, AP=2, - 1] = diag[A()A(t - 1),1] is a (¢ x t)
diagonal matrix. Let A'/%(¢) be a Cholesky factor of the matrix A(?).
Then we can rewrite (3) to the form

(V2R ()T (A2 (D)@ (1)b(1) = (A2 (0)@(1)) A1)y (1) .

Gentleman [5] and Hammarling [6] derived an extremely efficient
QR decomposition algorithms to solve the system of equations (3).
The algorithms are based on modified Givens rotations which require
no square-root operation (for detailed analysis see [8, 2, 4]). QR decom-
position constitutes a form of orthogonal triangulization and has par-
ticularly good numerical properties. By writing

AVE(0)0(t) = Q(1R(1)

where ()(¢) is a matrix with mutually orthogonal columns and R(?) is
an upper triangular matrix, system (3) can be rewritten as

O(1)b(1) = a(t) (4)
where
O(1) = [QT()QN)'/*R(1)

is an upper triangular square matrix and q(?) is a vector

a(t) = [T QM) QT (A A ()y (1) .
Thus, the estimation of the vector b is based on solution of the system
(4), which consists of the following steps:
1. initialize matrix ©(.) and vector q(.)
— at time k = 0 set ©(0) = and q(0) =0

— if a new center N, is allocated at time k& # 0, increase dimensions of
O(k) and q(k) to (N, + 1) x (N, + 1) and (N, + 1), respectively, and
set diagonal elements On, 41 n,4+1(k) = n/e(k) and gn,41(k) =7

71 is a small positive number
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2. at each time j # k, update A(j) via A(j) = AgA(j—1)+1— Xy, the appropriate
values for Ay and A(0) are just less than one [2, 9]

3. at time j # k, form the following (N, 4+ 2) x (N, + 2) matrix

A20(j — 1) [AY2q(j — 1)

Q@) =

o7 () ‘ y(7)

4. at time j # k, perform sequence of elementary Givens rotations (GR) [8] to
transform the matrix () to upper triangular matrix

Mﬁeg—1WMﬁﬁj—D 0(j) [a(y)
Q) = =R,

¢7(j) ‘ y(J) 0 | *
where 0is 1 x (N, + 1) zeros vector and * is a don’t care variable
5. at time j # k, compute B(]) =07 (a(y)

The initialization of the matrix O(k) and the vector gq(k) (at time
k # 0) in step 1 of the algorithm is based on solving the system (4).
According to Platt’s algorithm, we set a new weight by, (k) = e(k) after
allocating a center N, and by solving the equation defined by the last
row of (4) we achieve the proposed initialization.

The similar method of weights adaptation, based on extended Kalman
filter (EKY') algorithm, was applied to RANs by Kadirkamanathan and
Niranjan [7] and extended with Bayesian approach by McLachlan and
Lowe [11]. Comparison of algorithms based on described GQRD and
EKF can be found in [8].

It is known that convergence of GQRD algorithm causes lower adapt-
ability of the network to slowly varying non-stationarity of the time-
series and to the increase of the order of the network after allocating a
new center. To constrain this undesirable effect, we re-initialized A(j)
to A(0) in the case that a new center was allocated at time j.

2.4. PRUNING STRATEGY

Due to the fact that the above proposed algorithm does not remove
existing centers whose contribution to prediction accuracy is becom-
ing negligible or significantly falling down, the order of the network
can unsuitably increase without improving performance accuracy of
the network. To measure the contribution of the individual centers, we
used analogy with linear regression model. Billings and Chen [1] pro-
posed a criterion to select the most important regressors called error-
reduction-ratio (ERR) also used in orthogonal least squares method [3].
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Transforming the columns of matrix ® in linear regression model (2)
into a set of orthogonal basis vectors [3], we can rewrite (2) into

y=Wg+e,

where W is a t x (N, + 1) matrix with orthogonal columns w;. Then
the orthogonal least-squares solution §; is given as

Gi = Wiy
(wlwy)

1<+<N+1.

Because the w; and w; are orthogonal, the desired output variance is

1 1 ! 1
;yTy = ; Z g?WZTWZ + ;eTe .
=1

Thus, %Zf\;r{"l g?wl'w; represents the part of desired output variance

explained by the regressors and %eTe is the unexplained desired output
variance. The ERR of the i-th regressor is then defined as
giwlw;

yly

FRR; = 1<i< N +1.

By examining equation (4), as mentioned in [4], it is obvious that
elements ¢;(j) of the vector q at time j are directly related to the
relative strengths of the existing regressors (in our case centers). Thus,
we can write ERR of the i-th center at time j in the form

4*(j)

ERR(j) =
(J) Ty

(5)

A large value of ERR;(j) indicates the significant contribution of the
1-th center to the output error and vice versa.

In our on-line algorithm, we normalized ¢;%(j)in (5) by y*(j) instead
of y'y, and used the following idea to monitor the contribution of
individual centers to prediction accuracy. Let’s assume that at time £
a new center N, was allocated. For each center ¢ (1 <7 < N,), at each
time j, k < j < T < K, we compute number of cases C; which detect
momentary INRR; decrease, i.e. FRR;(j) < ERR;(j — 1). K denotes
the time instant at which the criteria for allocating a new center are
satisfied. At time K we prune a center s if

e C;=Cs>(C(K—-k),
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where 0 < ¢ < 1 is a proportion constant and C; represents the center
with the highest number of decreases of the FRR during the time inter-
val between two demands for allocating a new center. If the pruning
criterion is not satisfied, we just allocate a new center.

During the experiments, we observed several cases of a short-time
instability (usually 5-10 time steps) of the GQRD algorithm which
occurred after pruning a center. This is due to a sudden enormous
change of elements of the matrix O(.) and the vector q(.), which is
caused by pruning a center and adding a new one. To avoid this, we
experimentally found the criterion for initializing the s-th row and s-th
column of the matrix ©(A’) and the s-th element of the vector q(&').
After pruning the center Uy at time K, we set the s-th diagonal element
of O(K) to 1/n and other elements of s-th row and s-th column we set
to zero. The s-th element of the vector q(K') is set to 7. In both cases,
7 is the same small positive number as in step 1 of the algorithm in
section 2.3.

2.5. TIME-SERIES PREDICTION

The proposed approach was applied to prediction of chaotic Mackey-
Glass time series defined by differential delay equation

ds(t)
= —bs(t) + a

s(t—T)
14 s(t—7)10

with ¢ = 0.2,b = 0.1. We used the first 3103 data points (training part)
of data set available from CMU Learning Benchmark Archive 2. The
network was trained to predict the value at time ¢ 4+ 85, from inputs
at time ¢, t — 6, t — 12, and ¢ — 18. The following network parameters
were used: 0,05 = 0.7, 8pni, = 0.07, v = 0.999, A(0) = 0.9, Ay = 0.99,
a = 0.05, 5 = 107°. We used several combinations of the parameters
€, K, T', ¢ (Table I). The smaller value of ¢ causes allocation of the
higher number of centers, so we can decrease the widths of the centers
(by parameter x) and “soften” the criterion for pruning centers (by
parameter () . In our experiments, we did not allow pruning of the
centers during the first 1000 time-steps.

To compare our results with those reported by Platt, we construct-
ed a RAN with the same methodology as described in [12]. We used
Gaussian transfer function instead of Platt’s function approximation
and Platt’s strategy of é decay so that ¢ decreases to 6,,;, at the end

2 http://legend.gwydion.cs.cmu.edu/neural-bench /benchmarks/mackey-glass.html.
These data were generated with 7 = 17 and using a second-order Runge-Kutta
method with a step size 0.1.
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Table I. Combinations of the parameters
values used in experiments.

€ K T ¢
0.1 2.0 30 0.8
0.05 2.0 30 0.8
0.02 1.75 30 0.75
0.01 1.5 40 0.75

of learning process. The widths of the centers were defined in the same
way as in Platt’s approach.

3. Results

The quality of prediction was evaluated in terms of number of centers
(NC) and normalized root mean squared error (NRMSE) defined as

D (00 NS PNy
NRMSE(])_J PR DL

We compared our two modifications of RAN — RAN using Givens
QR decomposition (RAN-GQRD) and RAN using pruning and GQRD
(RAN-P-GQRD) — with algorithm proposed by Platt (RAN). The results
achieved at the end of iterative learning are summarized in Table II.
One can see, that by using RAN-GQRD network NRMSE decreased
by 50% on average compared to RAN. Moreover, improvement was
obtained also in terms of NC which significantly decreased (4 times on
average).

For the case of € = 0.05 we also present three characteristics (NC,
NRMSE and WPE which is defined below) of the iterative learning
process.

Figure 1 displays the NC. It can be observed that, during the first
half of the learning process, the NC was approximately equal for both
approaches. In the later stages, RAN allocated new centers more rapid-
ly and final NC was approximately 3.5 times greater than in the case
of RAN-GQRD.

In Figure 2, the dependence of NRMSE on number of observations
is depicted. During the whole learning process, RAN-GQRD was con-
sistently better than RAN.

The third measure — exponentially weighted prediction error (WPE)
— was proposed by Kadirkamanathan & Niranjan [7]. It represents

NPL.tex; 10/03/1999; 17:57; no v.; p.8
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Table II. Comparison of achieved results of RAN, RAN-
GQRD and RAN-P-GQRD algorithms for various values of

€.

RAN RAN-GQRD  RAN-P-GQRD
€ NC NRMSE NC NRMSE NC NRMSE

0.1 57 0.378 14 0.206 14 0.206
0.05 92 0.376 24 0.170 24 0.174
0.02 113 0.373 44 0.172 31 0.160
0.01 123 0.374 50 0.165 38 0.183

the prediction performance of the network which continually adapts
to incoming data. WPE, at time j, can be recursively computed as

WPE(j)? = 9 WPE(j — 1)* + (1 = 9) |e(5)[?

for some 0 < ¥ < 1. We used the same @ = 0.95 as in [7]. From the
Figure 3 it is apparent that also in terms of WPE, RAN-GQRD was
significantly better than RAN (on average 2 times smaller WPE).

To evaluate the significance of the pruning strategy, we compared the
performance of RAN-GQRD and RAN-P-GQRD networks for e = 0.01.
By using the pruning strategy we achieved similar prediction perfor-
mance as with GQRD network (Fig. 5 and Fig. 6), but the final number
of centers was 1.3 times smaller (Fig. 4). The high peaks of WPE and
small increases of NRMSE reflect the short-time numerical instability
of the GQRD algorithm, which occurs after pruning.

4. Conclusions

In this paper we report about a new method for constructing RANs.
Developed networks were applied to chaotic time-series prediction. Hav-
ing used NRMSE and NC as criteria for model evaluation, we found
out that our modifications using GQRD method provided results that
were superior to results achieved by Platt’s algorithm.

We introduced a strategy for pruning centers with low or decreasing
contribution to prediction accuracy of the network. The results achieved
with this modification in on-line prediction task were similar to the best
results we got without pruning, but the number of allocated centers was
smaller.

We think that the presented approach leads to on-line construction
of neural network models with optimal (or near optimal) complexity
and preserved prediction performance.

NPL.tex; 10/03/1999; 17:57; no v.; p.9
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Figure 1. Growth of RAN and RAN-GQRD during the learning process (¢ = 0.05).
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Figure 3. Prediction accuracy of RAN and RAN-GQRD in terms of WPE (e = 0.05)
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