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Introduction

Objectives

To develop probabilistic modeling framework for real-time
monitoring of drowsiness, impaired vigilance or fatigue.

The framework should overcome the main drawback of the
existing monitoring systems, which is their limited capability to
deal with a wide range of information sources needed to cover
many aspects influencing human behavior (drowsiness, fatigue
or vigilance).

Presented pilot study adapts the methodology for the continuous
sleep process modeling developed in the FP7-EU project
SENSATION.
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Driving experiment

The third generation moving base driving simulator
Experimental conditions are fully controllable with a high
internal validity (same condition for all subjects)
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Data

45 shift workers, all non-professional drivers -
32 recordings used
Drove during morning hours directly after a full night-shift
with no sleep
Drove 45 - 90 minutes
Electrophysiological signals: EOG, EMG and
EEG - Fz-A1, Cz-A2, Oz-Pz
Pre- and post-questionnaires, sleep diary, subjective
sleepiness ratings, driving behavior, pupillometry, eye
gaze, eye-lid opening, etc.
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Karolinska Drowsiness Score (KDS)

The method was developed to score drowsiness of awake
subjects and is based on the Rechtschaffen & Kales sleep
scoring rules - slow eye movements, changes in alpha &
theta activity
Visual data scoring using a single EEG channel (Oz-Pz)
and EOG, EMG - artifacts detection
20-sec segments divided into 2-sec bins, each bin visually
scored; KDS is the % of scored bins inside a 20-sec
window; range 0-100
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Hierarchical Gaussian Mixture Model - I

A single GMM

p(x |Ci) =
∑

k∈|Ci |

αk p(x |θk ) where
∑

k∈|Ci |

αk = 1, αk ≥ 0

p(x |θk ) = (2π)−d/2|Σk |−1/2e−(x−µk )T Σ−1
k (x−µk )/2
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Hierarchical Gaussian Mixture Model - II

Bayes’ theorem to estimate class-posteriors:

p(Ci |x) =
p(x |Ci)p(Ci)∑

i=1,2 p(x |Ci)p(Ci)
∝ p(x |Ci)p(Ci)
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Hierarchical Gaussian Mixture Model - III

Parameters to estimate:

a) class priors; p(C1), p(C2) b) # of mix. elements; |C1|, |C2|
c) mixing proportions; αi d) means, covariances; µi ,Σi
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Studies A & B

Study A
Hierarchical GMM trained to discriminate
classes/cornerstones: KDS = 0 & KDS ≥ 50
4-second segments - total 10654 (5433/5221)
AR representation on each EEG channel:
EEG (Fz-A1, Cz-A2, Oz-Pz)
Spatial variation of electrodes & a number of
mixture elements selection: 100 x 20-fold CV

Study B
30% of the cornerstones samples used for
training the model
All 4-sec segments applied in the time-course
of driving
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Study A
Study B

Study A - I

Histogram of the KDS values (35295 4-sec segments)
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Study A
Study B

Study A - II

Electrodes spatial variation

EEG electrodes set Correct classification rates Number of mixture elements
Mean (standard deviation) Mixture1 / Mixture2

Fz-A1, Cz-A2, Oz-Pz 77.3 (1.7) 4 / 8
Cz-A2, Oz-Pz 72.9 (1.5) 4 / 8
Fz-A1, Oz-Pz 76.3 (1.2) 6 / 12
Fz-A1, Cz-A2 73.5 (1.3) 2 / 6

Oz-Pz 67.2 (1.3) 8 / 16
Cz-A2 67.8 (1.4) 8 / 10
Fz-A1 71.5 (1.3) 4 / 12

Performance of the full EEG (Fz-A1, Cz-A2, Oz-Pz) setting vs. different sets of mixture elements

Mixture1 / Mixture2 Mixture1 / Mixture2 Mixture1 / Mixture2
4 / 8 8 / 8 10 / 10

76.1 23.9 78.0 22.0 77.5 22.5
21.6 78.4 23.0 77.0 22.7 77.3
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Study A
Study B

Study B - I

Spearman’s rank correlation coefficient
The nonparametric Spearman’s rank correlation coefficient
was computed to compare the smoothed KDS and
predicted drowsiness curves.
The RC values were > 0.2 in all but three subjects
Tha maximum RC value was 0.85
The median RC value was 0.53
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Summary

A reasonably high level of correlation was observed
between predicted drowsiness levels and the KDS values.
This was despite the fact that the hGMM was applied to
shorter data segments, no EOG information was used and,
in contrast to KDS, a broadband spectral representation of
multi-electrode EEG signals was considered.
The computations associated with the presented approach
are fast enough to build up a practical real-time system.

Outlook
Applying developed model to vigilance or fatigue data
Fusion of multi-modal sensor and contextual information
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