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Why cognitive workload monitoring?

Critical safety, high workload demanding, etc. environments
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Experiments

Uninhabited Air Vehicle (UAV) control

Trained subjects were monitoring several UAVs as they flew a
preplanned mission; processing SAR images (synthetic aperture
radar), vehicle health control, etc.
Different task conditions were used to control mental workload
levels
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Data recording

EEG recording:

Normal EEG example:
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Data pre-processing

Data were segmented into 2 sec long epochs

Spectral representation: Thompson multitaper estimate of the
power spectrum density; that is the distribution of power per unit
frequency

Pxx(f ) = Fx(f )F ∗
x (f )

where Fx(f ) is the Fourier transform of the signal x and ∗
indicates the complex conjugate
Example:
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An examle of the power spectral density estimate 
Subject B, electrode Cz 
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Data pre-processing

Coherence representation: Cross power spectra density Pxy (f ),

Pxy (f ) = Fx(f )F ∗
y (f )

or magnituted squared (coherence)

Cxy (f ) =
|Pxy (f )|2

Pxx(f )Pyy (f )

Data matrix construction: X(I×J×K )

I - time segments
J - electrodes or electrode pairs
K - PSD or CSD (coherences)
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PARAFAC model

The PARAFAC model with F factors: decomposition of the data
matrix X using three loading matrices, A, B, and C with elements
aif , bjf , and ckf

xijk =
F∑

f=1

aif bjf ckf + εijk

The criterion:

min
aif ,bjf ,ckf

= ‖xijk −
F∑

f=1

aif bjf ckf‖2

Software: proprietary m-codes developed by PDT, LLC, and
subroutines from the N-way toolbox for Matlab (Andersson and
Bro, 2000)
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Data set I

Set I: 2 subjects, 5 EEG electrodes (Fz, F7, Pz, T5, O2)
Two levels of mental workload (low & high)

Subject 2:
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Data set II

Set II: 6 subjects, 19 EEG electrodes (10-20 recording system)
Two levels of the global workload were defined based on a
vehicle health task and an operator vehicle interface task

Subject B - 19 electrodes
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Data set II

Spatial pattern, Subject B - 19 electrodes
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Data set II

Subject B - reduced set of 12 electrodes
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Data set II

Subject B - coherence representation

We found high loadings in the parieto-ocipital electrode pairs
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Data set II

Subject B - coherence representation

We found high loadings in the parieto-ocipital electrode pairs
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Data set II

Subjects E,G,I, K (plotted subject E)
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Data set II

Subjects E - coherence

We found the similar decomposition for subjects B, G, I, K
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Data set II

Subjects E - coherence

We found the similar decomposition for subjects B, G, I, K
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Data set II

Subjects B,E,G,I, K - coherence
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Data set II

Subjects C

Atom 1 - fronto-central, Atom 3 - centro-parietal
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Data set II

Subjects C - coherence

Atom 1 - fronto-central located electrode pairs
Atom 3 - centro-parietal & parieto-ocipital
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Data set II

Subjects C - coherence

Atom 1 - fronto-central located electrode pairs
Atom 3 - centro-parietal & parieto-ocipital
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Conclusions

Results show that mental workload may be tracked by EEG
components isolated using PARAFAC

On data set II, the workload related atom was remarkably stable
in 5 out of the 6 subjects

The short-and long range coherence related atoms are more
stable across the subjects, provide higher discrimination of the
low and high workload levels and seem to be less susceptible to
the movement related artifacts

We observed similarly promising and remarkable results on
additional two data sets monitoring cognitive workload and
cognitive fatigue
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