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Objectives Objectives 

To develop probabilistic modelling framework for real-time 
monitoring of drowsiness, impaired vigilance or fatigue.

The framework should overcome the main drawback of the existing 
monitoring systems, which is their limited capability to deal with a 
wide range of information sources needed to cover many aspects 
influencing human behaviour (drowsiness, fatigue or vigilance). 

Presented study adapts the methodology for the sleep process 
modelling developed in the SENSATION project. 

The developed methods are applied to day-time electrophysiological 
recordings (EEG, EOG, EMG) focused on screening subject’s 
drowsiness (sleepiness) and vigilance.  



Driving simulator
- the third generation moving base driving simulator 

- 45 shift workers 

- drove during morning hours directly after a full night-shift with no sleep 

Quatember-Maly clocktest
- a computerized version of the Macworth et al (1957) vigilance test 

- 15 subjects from a sleep related experiment (two nights in the sleep lab) 

- the test was performed during two consecutive day-time periods in      
i) three 50-min  ii) two 25-min long in time separated sessions 

Two experiments Two experiments –– 1) driving simulator  2) vigilance test1) driving simulator  2) vigilance test



Karolinska Drowsiness Score (KDS; Gillberg, Kecklund & Åkerstedt,1996)
- visual drowsiness scoring  based on a single EEG channel (Oz–Pz),    
EOG & EMG (artifacts detection)  

- the method was developed to score drowsiness of awake subjects and
is based on the Rechtschaffen & Kales sleep scoring rules: 

slow eye movements, changes in alpha & theta activity 
- 20-sec segments divided into 2-sec bins, each bin visually scored;  
KDS is the % of scored bins inside a 20-sec window; range 0-100

KarolinskaKarolinska Drowsiness Score (KDS)Drowsiness Score (KDS)
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Histogram of the KDS values for the 4-second segments used in the analysis. 



Gaussian Mixture Model (GMM)Gaussian Mixture Model (GMM)
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Parameters to estimate:
- group priors; p(C1), p(C2), ... 
- number of components
- mixing proportions; αi
- means, covariances; μi , Σi
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Structure of a Hierarchical GMMStructure of a Hierarchical GMM
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Bayes’ theorem to estimate class-posteriors: 

where p(x) is the unconditional density:  



First step: 
Two classes (cornerstones): KDS = 0 & KDS >= 50 
i) Hierarchical GMM trained to discriminate classes 
ii) 4-second segments – total 10654 (5433/5221)
iii) AR representation on each EEG (Fz-A1, Cz-A2, Oz-Pz) channel
iv) 10 x 10-fold cross-validation
Confusion matrix:   

Second step: 
30% of the cornerstones samples used for training the model. 
All 4-sec segment data were applied to the trained model. 
i) agreement with the KDS scores was visually checked 
ii) the nonparametric Spearman’s rank correlation coefficient (SC)

was computed to compare the smoothed KDS and predicted 
drowsiness curves.  

DriverDriver’’s drowsiness models drowsiness model

0.78 0.22

0.23 0.77



Results: driverResults: driver’’s drowsiness models drowsiness model
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In all but three subjects the Spearman’s rank correlation > 0.2; median 0.53, max. 0.85  
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Top: The KDS (dash-dotted) and twenty predicted drowsiness (PD) (solid lines) curves. 
The thicker line represents the mean value of the PD curves. 

Bottom: The boxplot of the Spearman rank coefficients (SC) for subjects 5,11,19 and 34.  

Results: drowsiness model robustness analysis Results: drowsiness model robustness analysis 



15 subjects used; each subject: 2 morning & 1 afternoon 50-min sessions
Pre-trained driving simulator drowsiness model was used: 
EEG (Fz-A1, Cz-A2, Oz-Pz)
The model was applied to all data and periods of  low & high posteriors 
were selected (<0.2 / >0.8) 
The model was then re-trained using the selected segments from the first and last 
third time periods
Reaction time (response) values were ‘smoothed’ using the cubic spline method 

Analysis was done on 2.5-min segments where the mean of the 
predicted impaired vigilance and response times was computed (≈ 20 values). 

Vigilance modelVigilance model
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Results: vigilance modelResults: vigilance model

Mean predicted vigilance (red, dotted) and extrapolated reaction time values. Afternoon session



ConclusionsConclusions

A reasonably high level of correlation was observed between predicted  
drowsiness levels and the KDS values. This was despite the fact that the   
hGMM was applied to shorter data segments, no EOG information was   
used and, in contrast to the Karolinska scoring protocol, broadband 
spectral information from multi-electrode EEG setting was considered. 

On vigilance task data the results were not so conclusive. High correlations 
were found on data recorded during the afternoon session only. However, 
it needs to be stressed that the presented analysis relates the continuously 
predicted vigilance and extrapolated reaction time values. This is new and 
in contrast to the approaches where global statistics computed from whole 
vigilance test experiments are analysed.  

The computations associated with the presented approach are fast enough 
to build up a practical real-time drowsiness or vigilance monitoring system.
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