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Abstract

This paper introduces Kernel Principal Component Regression (PCR)
with the Covariance Inflation Criterion (CIC) for model order selection.
The relation to Kernel Ridge Regression (RR) and other ’kernel’ regres-
sion techniques is given and two benchmark problems demonstrate the
comparable performance of CIC to cross-validation techniques. In all
reported experiments CIC provides the models with equal performance
in comparison to Kernel RR. Moreover, on a significant real world ap-
plication, Kernel PCR with CIC resulted in smaller model compared
to Kernel PCR with the cross-validation technique employed for the
selection of principal components.

1 Introduction

The main problem with existing regression techniques is their poor gener-
alization properties. In the case of ill-posed problems overfitting is the out-
come of selecting an inappropriate model structure based on a finite number
of examples {x;,y;};;. In practice the ill-posed problem can be viewed as
a training data set which possesses a small amount of information about
the desired solution. To overcome this problem a regularized formulation of
regression can be considered as a variational problem

n

i Freg(1) =+ 3V (31, 1)) + €D 0

fer i=1

leading to a general solution of the form [18]
n l
F) =) K (xi,%) + ) bjv;(x) (2)
=1 j=1

where the functions {’Uj(.)}é-zl span the null space of a Reproducing Kernel
Hilbert Space (RKHS) # [1] and the coefficients {¢;}1 ;, {bj}ézl are given
by the data. For the purposes of this paper we will only assume the case
when [ = 1 and vi(x) = const Vx. |f||3 is a norm in RKHS defined
by the Mercer kernel K(x,y); i.e. a positive definite function of the form
K(x,y) = (®(x).2(y)) [1, 18]. K(x,y) also corresponds to a canonical dot
product in a possibly high dimensional space F where the input data are
mapped by ® : RV — F (see e.g. [12]). This correspondence also gave rise
to the unification of Regularization Networks, SVR, Gaussian processes and



spline methods [17, 4, 19, 18, 2]. In this paper we focus our attention on
the case of the quadratic loss function V' = (y; — f(x;))? and will assume
non-linear regression models of the form f(x) = w? ®(x) + b; i.e. linear
models in a feature space F where input data {x;};_, are mapped through
a non-linear function ®(.). If y is measured with additive Gaussian noise
the most appropriate loss function is quadratic.

The multicollinearity or near-linear dependence of regressors is a serious
problem which can dramatically influence the effectiveness of a regression
model. Multicollinearity results in large variances and covariances for the
least-squares estimators of the regression coefficients. Multicollinearity can
also produce estimates of the regression coefficients that are too large in
absolute value. Thus the values and signs of estimated regression coefficients
may change considerably given different data samples. This effect can lead
to a regression model which fits the training data reasonably well, but in
general bad generalization of the model can occur. This fact is in a very close
relation to the argument stressed in [14], where the authors have shown that
choosing the flattest function! in a feature space can, based on the smoothing
properties of the selected kernel function, lead to a smooth function in the
input space. We discuss two methods which deal with multicollinearity —
ridge regression and principal component (PC) regression.

In [7, 8] we proposed the Kernel PCR technique based on an orthogonal
projection of the original regressors in feature space F onto PC’s found by
Kernel Principal Component Analysis (PCA) [13]. We will show that a final
solution of Kernel PCR leads to the form (1) and will also highlight the
relation to the ridge regression technique in feature space F.

In the current study we have used CIC, recently proposed by Tibshi-
rani and Knight [15], for model selection in the case of Kernel PCR. For
model selection in orthogonal linear regression CIC provided superior per-
formance to the well know Bayesian and Akaike’s information criteria [15].
CIC adjusts the in-sample training error by applying the model selection
rule to permuted versions of the data set and evaluates the covariance of the
predictions and true targets.

'The flatness is defined in the sense of penalizing high values of the regression coeffi-
cients estimate.



2 Kernel Principal Component Regression
Consider the standard regression model in feature space F
y =Zv+e, (3)

where y is a vector of n observations of the dependent variable, Z is an
(n x M) matrix of regressors whose i-th row is the vector ®(x;) of the
mapped x; observation into M < oo dimensional feature space F, 7 is a
vector of regression coefficients and € is the vector of error terms whose
elements have equal variance o2, and are independent of each other. In fact
we should assume the more general functional linear models, but in this
paper we will work with vectors rather than a functional representation of
the data. We also assume a ’centered’ form of the model which can be easily
achieved by centering the mapped data in F by (11) and (12) [13]. Thus
777 is proportional to the sample covariance matrix and Kernel PCA can be
performed to extract M eigenvalues {); }]]Vil and corresponding eigenvectors
{V7}}2,%. The k-th nonlinear PC of x is given as the projection of ®(x)
onto the eigenvector V¥

C(x)g = (VEB(x)) = ZafK(xi,x). (4)
=1

By the Kernel PCA projection of all original regressors onto the PC’s we
can rewrite (3) as
y =Xw+e, (5)

where X = ZV is now an (n x M) matrix of transformed regressors and V
is a (M x M) matrix whose k-th column is the eigenvector V¥. The columns
of the matrix X are now orthogonal and the least squares estimate of the
coefficients w becomes

w = (X"X)"'X"y = A7'X"y, (6)

where A = diag(A1, A2,..., ). The results obtained using all principal
components in (5) is equivalent to that obtained by least squares using the

*We are theoretically assuming that n > M. Otherwise we have to deal with the
singular case (n < M) allowing us to extract only up to n eigenvectors corresponding to
non-zero eigenvalues.



original regressors. In fact we can express the estimate 4 of the original
model (3) as

M
;7 — V(XTX)_IXTy — Z AZ_IVZ(VZ)TZTy
i=1

and its corresponding variance-covariance matrix [6] as

M
cov(d) = *V(XTX) 'V = > VAV =Y A VIHIVH)T L (7)
i=1
To avoid the problem of multicollinearity PCR. uses only some of the PC’s.
It is clear from (7) that the influence of small eigenvalues can significantly
increase the overall variance of the estimate. PCR simply deletes the PC’s
corresponding to small values of the eigenvalues );, i.e. the PC’s where
multicollinearity may appear. The penalty we have to pay for the decrease
in variance of the regression coefficient estimate is bias in the final estimate.
However, if multicollinearity is a serious problem, the introduced bias can
have a less significant effect in comparison to a high variance estimate. If
the elements of w corresponding to deleted regressors are zero, an unbiased
estimate is achieved [6].
Using the first N-nonlinear PC’s to create orthogonal regressors (4) for
our Kernel PCR model (5) we can formulate the solution as

N

N n n
f(x,c) = ZwkC(X)k +b= ZwkZafK(xi,x) +b= ZciK(xi,x) + b,
k=1 i=1

k=1 =1
(8)
where {¢; = Y0, wpaf}?_, and b represents a bias term.

We have shown that by removing the PC’s whose variances are very small
we can eliminate large variances of the estimate due to multicollinearities.
However, if the orthogonal regressors corresponding to those PC’s have large
correlation with the dependent variable y such deletion is undesirable (exper-
imentally demonstrated in Section 4). There are several different strategies
for selecting the appropriate orthogonal regressors for the final model (see
[6] and ref. therein). We now consider the recently proposed CIC for model
selection in KPCR as a novel alternative to methods such as cross-validation.

2.1 Covariance Inflation Criterion

We provide a brief overview of the CIC (for more detailed description see
[15]). For clarity we use the same notations as in [15]. Define the (average)



optimism
op(8) = E{Err(8) — erx(B)}

where €rT(/) is a training error of the best model Mg and Err(f) its test set
prediction error. The CIC represents the estimate of the optimism op(f)
plus err(5) and is defined as
: — 2 6-2 Oy, % * 2 ~2
cic(B) = aE(B) + > 2y 3 con{ul e (xi, MY} + 267, (9)
y

where cov® represents covariance under the permutation distribution of x;
and y, i.e. (x;,y;) with y],v5,...,y, a sample drawn without replacement
from y1,y2,...,yn and the x; fixed. Mj is the model for 3 estimate from
the permuted data, 62 is an estimate of the noise variance o2 and 02 =
S i (yi — 9)?/(n —1). In [15] authors proved that cic(8) is an unbiased

estimate of true optimism op(f) for linear fitting and proposed the following

algorithm to estimate the CIC. Fix the regressors x = {xl,x2, ., X, } and
generate B random permutations of the targets y*® = {yi®, ¢35 ' ,ynb}b
Estimate the prediction model Mg based on the data sets z*° = (x,y* )

and compute the predictions n}® = 1.5 (x;, M, E) of the model. Estimate the
expression Y cov?{y}, Nz« (x;, M)} by

n B
SN (it - gi)nt/B,
1=1b=1

where the ¥; is the true mean of the y}* under permutation sampling. Calcu-
late for the tuning parameter range, 8 (the model order parameter). In our
experiments we found B = 15 to be satisfactory. A brief review of Kernel
RR is now given.

3 Kernel Ridge Regression

Kernel RR is another technique to deal with multicollinearity by assuming
the linear regression model (3) whose solution is now achieved by minimizing

Z[yz i) + €I, (10)

where f(x,7) = 7 ®(x) + b and ¢ is a regularization term. The least-
squares estimate of v is biased but the variance is decreased. Similar to the



Kernel PCR case we can express the variance-covariance matrix of the ~
estimate [6] as

M
cov(y) =0 > Ni(Ai + &) 2VHVHT,
=1

We can see, that in contrast to Kernel PCR, the variance reduction in Kernel
RR is achieved by giving less weight to small eigenvalue PC’s via the factor
€.

In practice we usually do not know the explicit mapping ®(.). However
if the transformation is known, computation in the high-dimensional feature
space F may be numerically intractable. We can derive the desired solution
using the ’kernel’ trick, i.e. to use the fact that K(x,y) = (®(x).®(y)) and
express the solution in this dot product form [11, 2]

fx) =y (K+¢) 7k,

where K is the Gram matrix consisting of dot products of the mapped input
data K;; = (®(x;).®(x;)) 4,5 = 1,...,n and k is the vector of dot products
of a new mapped input example ®(x) and the vectors of the training set;
ki = (@ (x;).0(x)).3

In this paper we assume centralized Kernel RR [9]; i.e. we assume the
sample mean of the mapped data ®(x;) and targets y; to be zero. The
centralization of the individual mapped data points is accomplished by the
”centralization” of K and K; matrices given by the

1 1
K= (- Elnlg)K(I - 51"15) (11)

1 1
K; = (K; — ﬁlntlz;K)(I - Elnlg) (12)

where I is an n dimensional identity matrix and 1,, 1,, represent the
vectors whose elements are all ones, with length n and n;, respectively. K,
represents the (n; x n) kernel matrix for all n; testing data points.

3The same form can be derived in the case of the dual representation of the Regular-
ization Network minimizing (1) using the loss function V (v, f(x:)) = (y; — f(x:))? [5, 3]
or through the techniques derived from Gaussian processes [2].



4 Experiments

4.1 Benchmarks

First we tested our method on the well known Friedman#1 and Boston
housing datasets. In both cases we used a 2-nd order polynomial kernel
K(x,y) = ({(x.y) +1)? which leads to the projection of the data sets into 66
and 91 dimensional feature spaces, respectively. For the Friedman data we
randomly generated 100 training sets of size 200 and validation sets of size
40 and one 1000 example test set. In the case of the Boston housing data
set we randomly split the data into 100 — 401/81/25 train/validation/test —
partitions. The validation sets were used for cross-validation model selection
in the case of Kernel PCR and for setting the regularization term & in the
Kernel RR model. Because the CIC for model selection is based only on
the in-sample error for comparative reasons we did not use a validation set
for building the final models. In Figure 1 the number of selected regressors
(model order) as a function of the total number of regressors used is de-
picted. We compared the cross-validation (CV) technique and CIC. Based
on the eigen spectrum regressors corresponding to the first 20 most signifi-
cant (largest eigenvalues) PC’s (Friedman data set) were used in all models.
On the Boston data set the first 5 most significant PC’s were used. First
regressors entering the model were selected by ¢-statistics representing their
importance in the model. Although the best performing (test error) final
models are on average created by 60% of all the available regressors, it is
observed that some of the regressors with smaller variance entered the final
models. In addition the final models selected by CIC gave on average a 2.5%
lower test-set mean-square error (MSE) on both data sets in comparison to
CV.

On three samples of the Boston housing data we observed a significant
increase in the error using the Kernel RR method and we decided to create
3 new train/test partitions. In fact, the high prediction error variance using
the ’kernel’ regression methods on this data set was also observed in [11].
On both sets of data we did not observe significant differences in MSE on
test data.

4.2 Human Signal Detection Performance Monitoring

We have used Event Related Potentials (ERPs) and performance data from
an earlier study [16]. Eight male Navy technicians experienced in the op-
eration of display systems performed a signal detection task. In this study
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Figure 1: Comparison of the CIC (solid line) and cross-validation (CV) (dot-
ted line) techniques for model selection on Friedman#1 (left) and Boston
housing (right) data sets. The arrows indicate the models on which the best
performance on test set was achieved. The results are averaged over 100
simulations.

we randomly selected two data sets. Performance of the operators was mea-
sured as a linear composite of speed, accuracy, and confidence. A single
measure, PF1, was derived using factor analysis of the performance data for
all subjects, and validated within subjects. The computational formula for
PF1 was

PF1 = 0.33xAccuracy + 0.53+Confidence - 0.51%Reaction Time

using standard scores for accuracy, confidence, and reaction time based on
the mean and variance of their distributions across all subjects. PF1 varied
continuously, being high for fast, accurate, and confident responses and low
for slow, inaccurate, and unconfident responses. ERPs were recorded from
midline frontal, central, and parietal electrodes (Fz, Cz, and Pz). The full
description of the experimental setting can be found in [16].

The desired output PF1 was linearly normalized to have a range of 0 to
1. For each subject we split the data into 10 different 55% and 45% training
and testing partitions. Eleven-fold CV to estimate desired parameters was
applied on each training partition. After CV a final model was tested on
an independent testing partition. For detail experimental setting and the
principal component selection strategy used in the case of CV we refer the

10



reader to [10]. In the case of CIC the first 50% of the regressors entered all
models and 2.5% of the regressors corresponding to the smallest eigenvalues
were discarded from the models. As in the former case t-statistics were
used for adaptive selection of the regressors. Described results, for each
setting of the parameters, are an average of 10 runs each on a different
partition of training, validation and testing data. The validity of the models
was measured in terms of normalized MSE (NMSE) and in terms of test
proportion correct (TPC), defined as the proportion of data for which PF1

was correctly predicted with 10% tolerance, i.e. 0.1 in our case. In this

. _lx=yl? .
study we used a Gaussian kernel K (x,y) = e (F=7) , with the L values on

which individual methods achieved the best results in our former study [7].
In Figure 2 we depicted an example of cic(f) as a function of model order £.
In Table 1 we summarize the results achieved on two subjects A (592 ERPs)
and B (776 ERPs). We can see that all methods achieved similar prediction
results. The CIC criterion picked up the models which on average uses only
66% of the overall regressors which is a significant reduction. Moreover, the
number of selected principal components was less than 90% in comparison
to Kernel PCR with CV criterion employed.

Method NMSE TPC # of regressors
A B A B A B
KPCR + CIC || 0.119 0.182 | 90.6 84.7 | 200.4 258.5
(0.03) (0.03) | (0.02) (0.02) | (19.7) (16.9)
KPCR + CV | 0.118 0.175 | 90.3 84.6 | 225.3 289.6
(0.03) (0.02) | (0.02) (0.02) | (32.0) (54.5)
Kernel RR 0.117 0.173 | 91.2 84.8 | - -
(0.03) (0.02) | (0.02) (0.02) | - -

Table 1: The comparison of the NMSE and TPC prediction errors for sub-
jects A and B. The values represent an average of 10 simulations and corre-
sponding standard deviation is presented in parentheses. The last column
represents a model order selected by CIC and CV, respectively.
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Figure 2: Three examples of CIC (left) and NMSE (right) as the function
of model order (number of selected regressors) achieved on subject A. On
the rest of runs and on subject B the similar behavior was observed. The
'+ mark indicates selected model (min. of CIC).

5 Conclusions

On two benchmark and real world data sets we have demonstrated the com-
parable performance of Kernel PCR with CIC for model selection in com-
parison to Kernel RR. The connection between both methods was given.
The computational cost of Kernel PCR is comparable with Kernel PCA.
In fact independence of the regressors allows us to compute the estimates
w; of (6) adaptively and this is a significant time reduction during model
selection.

CIC is based on estimation of in-sample error, i.e no validation set is
needed. It was pointed out in [15] that CIC is a good measure for comparing
models but may be less appropriate than methods based on extra-sample
error, e.g. cross-validation, when good performance of the model on unseen
test data is required. However, the selection of the representative validation
data set is needed. In our study on two benchmark data sets the similar
behavior of cross-validation and CIC was observed. On two subjects selected
from the data set reflecting the problem of estimating human signal detection
performance from the Event Related Potentials we observed that the Kernel
PCR method with CIC resulted in similar performance but with a smaller
number of principal components selected. In practical situations splitting

12



of the available data set into training and validation sets leads not only
to less accurate estimates of the components but also has the potential to
the decrease their number when n < M. Thus, the possibility to select
?correct” principal componets by in-sample model selection procedures may
be fruitful here.
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