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Abstract

We investigated the possibility to use the Independent Component Analysis (ICA) as a method
for preprocessing the sleep EEG data with the aim to improve detection of sleep spindles - specific
phenomena of sleep EEG recordings prevailingly occurring during the stage 2 of the sleep. We
projected the strengths of individual Independent Components (ICs) onto the scalp sensors to detect
potential spatial localization of sleep-spindles sources. We used two different algorithms for ICs
separation with aim to compare the fitness of the algorithms in sleep-spindle detection problem.



1 Introduction

Sleep spindles are specific phenomena of electroencephalograms (EEG), (i.e. recordings of the electrical
activity of the brain ) during sleep. They may by defined as a group of rather broad frequency (11.5 -
15 Hz) oscillations with evidence for variability and heterogeneity [15]. Occurrence of sleep spindles is
one criterion of standard criteria of sleep stages classification defined 30 years ago by Rechtschaffen and
Kales [12]. Thus the correct automated detection of spindles can increase the accuracy of sleep stage
classification.

The visual analysis of sleep spindles is highly time-consuming and difficult in the case of multi-
channels recordings. In [13] automatic sleep spindle detection algorithm was proposed. Criteria based on
definition of frequency, amplitude and duration properties of human sleep spindles were used on raw EEG
recordings. The another heuristic criteria were used to distinguish among muscle artifacts, fast alpha
activity and sleep spindles. Although the results using one EEG channel are promising the problem of
multi-channel sleep spindle detection caused by time-delays between occurrence of spindles in different
channels is still open.

In this paper we used a Independent Component Analysis (ICA) to separate a sleep spindle activity
from multi-channels EEG recordings. The method is based on the assumption that the EEG measured on
the human scalp is a linear mixture of anatomically and physiologically separate processes of the brain.
The results of using ICA for auditory event-related potentials detection [10], extraction of ocular artifacts
from EEG [14] and removing artifacts from EEG [7] encourage us to use ICA in our case. The separated
’sleep spindle’ signal we used for successive sleep spindle classification.

In our study we used two different ICA algorithms. The first one is an extended version of the infomaz
algorithm [2]. The modification based on learning rule derived by Girolami [4] gets over the incapability
of the original algorithm to separate the mixtures of sub-Gausssian sources. The better convergence
property is achieved by using the natural’ gradient proposed by Amari et al. [1] or ’relative’ gradient
proposed by Cardoso and Laheld [3]. The second, very fast fized-point algorithm based on maximising
new approximations of differential entropy was derived by [5, 6]. Both algorithms were recently used for
separation of the EEG sources [9, 14].

2 Independent component analysis (ICA)

The problem of ICA can be simply formulated as finding a set of statistically independent signal sources
from their linear mixture. Usually in ICA we observe m scalar random variables z, x2, ..., Z,, which are
assumed to be linear combinations of n unknown independent components (ICs) s1, 82, ..., $,. In matrix
notation we can write

X = As,

where A is an unknown m X n mixing matrix (here we will assume that n < m). The goal of the ICA is
then to estimate the inverse of the matrix A and the ICs using only observations x.

Several algorithms based on information theory were proposed (see review [8]). Nadal and Parga in
[11] showed that maximum of the mutual information between the input and output of the neural unit is
achieved in the case of the factorial coding of the output distributions. This means the independence of
the outputs. Bell and Sejnowski [2] proposed infomaz algorithm for estimation of the inverse of the matrix
A based on maximisation of the mutual information between the input and output. They assumed neural-
like structure with an input vector x, a weight matrix W (estimation of the inverse of the matrix A)
and a monotonically transformed output vector y = G(u) where u = Wx. Thus the components of the
output vector y represent the estimated source signals. Next, they showed that in the case of invertible
deterministic mapping G(.), the mutual information between input and output can be maximised by
maximising the entropy of the output alone and it means minimising the mutual information between
the output components. Using the gradient ascent of entropy of the output vector y (with density f(.))
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with respect to matrix W they derived the iterative algorithm to update the matrix W :
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where
I.I

Yi(u;) = %(Ui)-

To improve the convergence rate the 'natural’ gradient was proposed [1], or equivalently the relative
gradient [3]:
AW  [I - ¢x"|W.

Unfortunately, the proposed algorithm fails in the case of separation of sources with negative kurtosis
distributions, i.e. sources with a more flat distribution than Gaussian. The extended infomaz' algorithm
which allows separation of mixtures of super-Gaussian (i.e. with positive kurtosis) and sub-Gaussian
(i.e. with negative kurtosis) sources was proposed by Girolami [4]. The extension is based on using a
negentropy (i.e. J(pu) = H(py) — H(pu), where H(p,) is entropy of the data density u and H(p,) is a
entropy of a Gaussian density which has equal mean and covariance) as a projection pursuit index. The
final version of the extended infomax using 'natural’ gradient is:

AW  [I — Ktanh(u)u” — uu”|W |

where K is a diagonal matrix with elements sign(kq(u;)) and kq(u;) is the kurtosis of the source estimate
u;- kq(u;) equals 1 for super-Gaussian and -1 for sub-Gaussian sources.

The other ICA approach we used in our study was fized-point - FastICA? algorithm proposed in [5, 6].
The main idea of the algorithm is based on using a new contrast function

Ja(w) = [E{G(W"x)} - E{G(»)})?,

as an approximation of the negentropy measure of a zero-mean random variable x. Maximising of the
negentropy corresponds to minimising the mutual information. v is a standardized Gaussian variable and
it is assumed that E(w7x)? = 1. Such a contrast function can reflect a different statistical property of
the individual sources. For example, using G(z) = z*, Jg becomes simply the kurtosis of z. Maximising
Ja(w) leads to finding a vector w in one step and thus to determine one IC. Decorrelation of w7 x
after kth iteration from previously determined outputs wix, wl x, ...,wa_l)x allows to estimate ICs
one by one [5]. The vectors wy,..., w,, form the unmixing matrix W and components of the vector
u = (uy,us,...,un)’ = Wx are estimated ICs. As W is not the exact inverse of A, WA = PD (where P
is a permutation matrix and D is a diagonal matrix), separation is unambiguous only up to permutation
and scaling of the source signals.

First the data are sphered or whitened. This means that x is linearly transformed by matrix S to a new
variable with correlations matrix equaling unity. This can be achieved by classical Principal Components
Analysis. This will change the total estimated unmixing matrix to WS instead of W. Next, one vector
w is estimated by an iterative fized-point algorithm:

wt = B{xg(w"x)} — B{g'(w"x)}w
w=wt/|[w?|
where g and ¢’ are first and second derivatives of the function G and w* is a new estimated value of

w. As a concrete choice of non-linearity we chose the function G = logcosh(z). The benefits of several
non-linear function G' were discussed in [5].

3 Simulated data

We reconstructed the artificial problem to demonstrate the possibility of ICA to separate the signal (s1),
consisted from several consequent sleep spindles, from its random mixture with periodic (s) and white
noise with Gaussian distribution (s3) signals.

The source signals (s, s2, $3), mixed signals (z1,z2, z3) and estimated source signals (u1,us,u3) and
(y1,y2,v3) are presented in Fig.1, Fig.2, Fig.3 and Fig. 4, respectively.

In spite of the fact that sleep spindles are transient events in range of 0.5sec to several seconds, it is
clear that ICA separates spindle signal with high accuracy. There is no difference between performance
of the extended fized-point (Fig.3) and infomaz (Fig.4) algorithms. The permutation and scaling of the
original sources is easy to notice.

! Matlab code is available from http://www.cnl.salk.edu/tewon /ica_cnl.html
2Matlab code is available from http://www.cis.hut.fi/projects/ica/fastica/



4 Real data

A 7min recording of 18 channels EEG (Fpl, F8, F4, Fz, F3, F7, T4, C4, Cz, C3, T3, T6, P4, Pz, P3,
T5, 02, O1) was used . Electrodes were placed according to the international 10-20 system. The data
were digitized with a sampling rate of 102.4 Hz. Two EOG channels didn’t contribute to better spindle
detection on our data set so we didn’t use them in results presented in this report.

The fast fized-point ICA algorithm and extended infomazr were applied on all 43008 data points
(7min). The using the subsequent 5000 (49sec) data points intervals leaded to slightly worse classification
results as using total data set. To evaluate efficacy of ICA preprocessing we compared the accuracy of
spindles detection using the raw EEG data and the IC data. In [13] a technique for spindle detection from
raw EEG was introduced. In our investigations we used a simpler algorithm. The raw EEG and IC were
band pass filtered using the spindle-frequency band 11.5 -16 Hz. The filtered data were transformed to the
+1 range and mean-square amplitude (MSA) was calculated at each data point by sliding window with
length 0.5sec (the 0.5sec was defined as minimum of sleep spindle duration [13]). A random 30sec data
interval was selected to determine the threshold constant (TC) for MSA. The TC was set up to correctly
classify the spindles detected by an experienced electroencephalographer during this time interval. This
was done for every EEG channel separately. The optimal TC for all 30sec intervals was unable to
determine for several channels due to impossibility to distinguish between the correct classification and
false positive classification as is illustrated in Fig.5. Using the TC criterion the spindle was detected if
at least 0.25sec was value of MSA greater than TC.

The time delays between the spindles in different channels make the detection problem more compli-
cated. We simply detected a spindle at time point ¢ if the spindle was detected at least in one of the
channels. This ’advantage’ in the detection procedure can lead to unwanted effect, i.e. by classifying
several consequent spindles as one event (this was confirmed in our experiments).

The possibility to use the columns of inverse of the estimated matrix (W ~1!) as the projection strengths
of individual ICs onto the scalp sensors was proposed in [10]. We used the Matlab code® for these
projections. Two different 50sec data intervals were used. The both intervals were divided into two
25sec segments and the first 10 ICs were computed by fized point algorithm for each segment. Here, we
have to say that the 25sec intervals were intentionally selected to seize ’local’ distributions of spindles
during these intervals. The choice of shorter time intervals is constrained by the convergence of the ICA
algorithm. The ’spindle’ ICs were settled visually.

5 Results

Fig.6 depicts 8 channels of EEG (Fpl, F8, F4, Fz, C4, C3, P4, Pz) during a random 12sec interval. The
sleep spindles detected by electroencephalographer are expressed by marks. The first 10 time aligned ICs
computed by fized-point algorithm are shown in Fig.7. The correct locations of spindles as determined
by the electroencephalographer are depicted at the bottom of the graph (the detection of the spindle
in one channel was sufficient). IC5 and IC3 were visually settled as the ICs with the strongest spindles
evidence. 12 ICs computed by extended infomaz are depicted in Fig.8. The IC8 and IC4 were settled as
the ’spindle’ ICs.

The results of classification for all 7min recording are presented in Table 1. The number of spindles
detected by electroencephalographer was 95. The total number of detected spindles is shown in the first
column. The number of cases in which spindle was detected more than once is in the last column of the
table. Classifications using different values of TC (number in brackets) for the strongest ’spindle’ and
the results using combination of two ICs with different TC are presented.

In Fig.9 the distribution of detected spindles over a scalp electrodes during the selected 50sec interval
is depicted. The topographical mapping of the strength of the ICs computed over this interval is in
Fig.10. In the next two figures (Fig.11 and Fig.12) the mapping of the ICs computed on first and second
25sec segments are presented. The ’spindle’ IC were marked by stars. From visual observation we can
hypothesize that there is a ’slight’ correlation between the topographical projections of the ICs and
distribution of the spindles over a scalp electrodes during a shorter time sequences (25sec). In spite of
impossibility to determine the exact spatial distribution of the spindles sources we can hypothesize about

3http://www.cnl.salk.edu/fewon /ica_cnl.html



# of detections | # of correct | # of false negat. | # of false posit. | # of overlaps
EEG 121 91 4 30 3
fized-point
IC5 (0.02) 80 71 24 9 1
IC5 (0.01) 102 76 19 26 2
IC5 (0.02) + 87 76 19 11 1
IC3 (0.04)
ext. infomaz
IC8 (0.02) 83 67 28 16 6
IC8 (0.01) 109 Ve 18 32 5
IC8 (0.02) + 101 78 17 23 9
IC4 (0.04)

Table 1: Numbers of total detected, correct, false negative, false positive and overlapped cases of sleep
spindle classification: comparison of using raw EEG data and ’spindle’ ICs data. Values in brackets
correspond to selected threshold constant (TC).

the frontal, central or occipital localization. We can observe similar results based on data from different
50sec data interval (Fig. 13-16).

6 Discussion

The experiments on simulated data confirmed the theoretical possibility of ICA method to separate
a signal containing sleep spindles. The results obtained on real EEG data showed that ICA can partly
separate the spindle activity into one IC. Using longer data intervals (in our case 7min EEG) two ’spindle’
ICs were detected. In this case one ’spindle’ IC was dominant in the sense that stronger evidence of sleep
spindles was visually observed. There are usually 2-3 ’spindle’ ICs using shorter time sequences (25sec).
Visual determination of dominant ’spindle’ IC is not so easy as in former case *.

The delays between occurrence of the spindles in different EEG channels complicate the classification
algorithm proposed in [13]. The simple classification technique used for raw EEG data in our research
led to a high number of spindle detections and thus to a high number of false positive classifications
and to unsuitable overlap detections. Using ’spindle’ IC for detection showed a high percentage of false
negative classification. Smaller TCs decrease number of false negative classification at the expose of false
positive classification. Using two ICs with different TC improved overall classification. We think that the
big advantage of ICA to separate sleep spindle activity into 1 or 2 ICs should be expressed by proposing
better classification algorithm in future. Using fized-point algorithm led to slightly better classification
results, however, better comparison have to be done here.

In [15] two different type of sleep spindles were detected and thus the hypothesis about two different
spindle sources arose. Regarding to this, the question to separate spindle activity into one channel remains
open.

The first investigations of possibility to detect the EEG electrodes containing spindles and thus partly
determine the brain areas producing spindle activity are challenging but more investigations have to
be done here. Especially in the cases where the ’spindles areas’ change very quickly and thus we are
constraint with convergence property of ICA.

In future work, we will investigate the possibility of using an extension of ICA for problems with
time-delayed convolved sources. We hypothesize that this could lead to more exact evidence and location
of the spindles in ’spindle’ IC.

4We have to note, that in several cases of shorter time sequence one dominant ’spindle’ IC was detected.
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Figure 1: The source signals. Sleep spindles signal (s;), white noise with Gaussian distribution (s2) and
periodic signal (s3). Estimated kurtosis: k(s1) = 6.661, k(s3) = 0.031, k(s3) =
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Figure 2: Mixed signals z1,z2, x3.
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Estimated kurtosis: k(z1) = 0.622, k(z2) = —0.553, k(z3) = —0.735.
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Figure 3: Estimated source signals ui,us,us using fized-point algorithm. Estimated kurtosis: k(ui) =

6.667, k(us) = —1.5, k(us) = 0.032.
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Figure 4: Estimated source signals yi,y2,ys using extended infomaz algorithm. Estimated kurtosis:
k(y1) = —1.5,k(y2) = —6.668, k(y3) = 0.032.
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Figure 5: An example of impossibility to determine a unique threshold constant (TC) correct for all
sleep-spindles determined by electroencephalographer (intervals between vertical lines). The TC suitable
to detect a third ’correct’ spindle will lead to one false positive detection ("bump’ centered around value
1000).
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Figure 6: 12sec recording of 8 EEG channels (Fpl, F8, F4, Fz, C4, C3, P4, Pz) with sleep spindles marks
determined by electroencephalographer.
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Figure 7: First 10 ICs computed by fized-point algorithm (time aligned with Fig.6) with sleep spindles
marks determined by electroencephalographer.
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Figure 8: 12 ICs computed by extended infomaz algorithm (time aligned with Fig.6) with sleep spindles
marks determined by electroencephalographer.
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Figure 9: Marks of the spindles detected by eletroencephalograhper during the 50sec data interval. Order
of the channels from top to bottom: Fpl,F8 F4 Fz F3 F7,T4,C4,Cz,C3,T3,T6,P4,Pz,P3,T5,01,02.
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Figure 10: Projection of the ICs computed from 50sec data interval (Fig.10) onto the scalp sensors.
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Figure 11: Projection of the ICs computed from first 25sec data interval (Fig.10) onto the scalp sensors.
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Figure 12: Projection of the ICs computed from second 25sec data interval (Fig.10) onto the scalp sensors.
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Figure 13: Marks of the spindles detected by eletroencephalograhper during the 50sec data interval. Order
of the channels from top to bottom: Fpl,F8 F4 Fz F3 F7,T4,C4,Cz,C3,T3,T6,P4,Pz,P3,T5,01,02.
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Figure 14: Projection of the ICs computed from 50sec data interval (Fig.10) onto the scalp sensors.
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Figure 15: Projection of the ICs computed from first 25sec data interval (Fig. 10) onto the scalp sensors.
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Figure 16: Projection of the ICs computed from second 25sec data interval (Fig.10) onto the scalp sensors.
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